

INTERIM DRAFT HYDROGEOLOGIC REPORT NAPANEE WATER POLLUTION CONTROL PLANT UPGRADES NAPANEE, ONTARIO

Report

to

R.V. Anderson

Paul Coulson, P.Geo. Hydrogeologist David Hill, P.Eng., P.Geo. Senior Hydrogeological Engineer

Date: August 18, 2021 File: 30726 Renato Pasqualoni, P.Eng. Review Principal

TABLE OF CONTENTS

1.	INTRC	ITRODUCTION						
2.	BACK	GROUND REVIEW	2					
	2.1	Site Description	2					
	2.2	Site Physiographic, Geologic and Hydrogeologic Settings						
	2.3	Environmental Setting						
	2.4	MECP Well Records Review and Status						
	2.5	Existing Water Taking Permits						
	2.6	Previous Investigation						
3.	INVES	STIGATION PROCEDURES	5					
	3.1	Geotechnical Drilling and Testing	5					
	3.2	Monitoring Well Installation	7					
	3.3	Water Level Monitoring						
	3.4	Ground Water Sampling and Chemical Analysis						
	3.5	Single Well Response Tests	10					
4.	TESTI	NG RESULTS AND ANALYSIS	10					
	4.1	Water Level Monitoring	10					
	4.2	Hydraulic Conductivity	12					
	4.3	Groundwater Quality Results	12					
5.	DEWA	TERING ASSESSMENT	14					
	5.1	Construction Dewatering	14					
	5.2	Permanent Drainage	19					
6.	IMPAC	CT ASSESSMENT	19					
	6.1	Geotechnical Impacts (Not Completed)	19					
	6.2	Impacts to Surface Water and Natural Environment	19					
	6.3	Impacts to Water Well Users	20					
	6.4	Other Potential Impacts	20					
7.	CONC	LUSIONS AND RECOMMENDATIONS	21					
	7.1	Category 3 Permit To Take Water	21					
	7.2	Discharge of Groundwater	21					
Client: File No.: E file: 30	R.V. And 30726 726 Napar	lerson Napanee Water Pollution Control Plant Upgrades INTERIM DRAFT nee Water Pollution Control Plant Draft HGR 2021-08-18.docx	August 18, 2021 Page: ii of iii					

8.

7.3	Propo	sed Monitoring Plan	22
	7.3.1	Groundwater Taking	22
	7.3.2	Groundwater Quality	22
	7.3.3	Groundwater Level Monitoring	23
	7.3.4	Surface Water Monitoring	24
	7.3.5	Pre-construction Survey and Settlement Monitoring	24
7.4	Propo	sed Contingency Plan	24
CLOS	SURE		

STATEMENT OF LIMITATIONS AND CONDITIONS

APPENDICES

Appendix A	Drawings

- Appendix C Record of Borehole Sheets
- Appendix D Single Well Response Test Results
- Appendix E Groundwater Analytical Results and Certificates of Analysis
- Appendix F Dewatering Estimates

1. INTRODUCTION

This report presents the results of a hydrogeological investigation completed by Thurber Engineering Ltd. (Thurber) in conjunction with geotechnical investigation for the design and construction of upgrades at the Napanee Water Pollution Control Plant (WPCP). The project is located southwest of the intersection of Water Street W. and Hessford Street, extending to the Napanee River. Thurber carried out the investigation as a sub-consultant to R.V. Anderson Associates Limited (RVA).

The Hydrogeologic Report was provided to establish baseline hydrogeological conditions, assess groundwater conditions, evaluate construction dewatering requirements, assess the potential impacts of construction on the local groundwater quality and quantity, determine water taking permit requirements, and develop a groundwater monitoring program for the proposed upgrades to the WPCP.

Hydrogeological services may be required for the design of the following facilities included in the WPCP upgrade:

- Two-storey Headworks Building
- Four Water retaining tanks (up to 8 m below grade)
- Single Storey Tertiary / Ultraviolet Disinfection Building
- Maintenance Building
- Site-wide access roads
- Outfall pipe

A geotechnical investigation was completed concurrently for this project. The results of geotechnical investigation and recommendations should be read in conjunction with this report and is presented under a separate cover entitled:

• Draft Geotechnical Design Report, Napanee Water Pollution Control Plant Upgrades, Napanee, Ontario by Thurber Engineering Ltd. dated July 16, 2021.

The hydrogeological components of the investigation included the following tasks:

- Conduct background review within 500 m of the site (the Study Area) including the setting, Ministry of the Environment, Conservation and Parks (MECP) well records, geological maps, relevant existing reports, and proposed design drawings as available.
- Install eight monitoring wells within select boreholes of the concurrent geotechnical investigation and develop them prior to further testing.

- Collect monthly groundwater level readings in the monitoring wells installed during the concurrent geotechnical investigation for six months. Currently five rounds of water level readings have been collected. One additional water level reading will be collected in the fall season and will be included in a revised version of this report.
- Conduct in-situ hydraulic testing in all monitoring wells.
- Collect two groundwater samples from selected monitoring wells and testing in accordance with the Provincial Water Quality Objectives (PWQOs) and Greater Napanee Sewer-Use By-Law with respect to storm and sanitary sewers.
- Hydrogeological analysis and reporting, including estimated water taking rates, radius of influence, potential impacts to water users, structures, the natural environment including surface water features, potential existing soil or groundwater contamination, potential mitigation measures as well as a monitoring plan and contingency plan, and assessment of water taking permitting needs.

It is a condition of this report that Thurber's performance of its professional services is subject to the attached Statement of Limitations and Conditions.

2. BACKGROUND REVIEW

2.1 Site Description

The project site is located at 300 Water Street West, Napanee, Ontario (the Site). The Site is bounded by Water Street West to the north and the Napanee River to the south. The west and east sides of the Site are bounded by the Riverine Retirement Home property line and Hessford St, respectively.

The ground surface of the Site slopes towards the river to the south and ranges from approximately Elevation 85 m in the north to 75 m in the south of the Site. The Study Area lies within the Napanee River Valley and the valley wall rises north of the Site to approximately 100 m elevation.

In general, the land use surrounding the Site is residential or vacant. A retirement home lies to the west of the Site, while homes, a restaurant, and an apartment building are north and east of the Site. The Site itself is industrial and wastewater treatment is conducted on Site.

The plan and profile drawings of the Site and the proposed upgrades are shown on Drawings 30726-1 and 30726-2 of Appendix A. The Study Area is shown on Drawing 30726-3 of Appendix A.

2.2 Site Physiographic, Geologic and Hydrogeologic Settings

Based on the information in *The Physiography of Southern Ontario*¹ by Chapman and Putnam (1984), the Site is located within the Napanee Plain physiographic region. The Napanee Plain is characterized by flat-to-undulating limestone with little overburden, except for within stream valleys and along the Napanee River and Salmon River Valleys, which may contain a variety of alluvial deposits. The region is characterized as a clay plain, with fine textured glaciolacustrine deposits of silt and clay with minor sands and gravel. The Site is situated on limestone plains and clay plains physiograph landforms.

Based on *Quaternary Geology Map M288*² the surficial deposits in the vicinity are generally glaciolacustrine deposits of massive to laminated silt and clays with minor sand and gravel.

According to *Paleozoic Geology Map P2976*³, the underlying bedrock in the area consists of the Bobcaygeon Formation. This formation contains limestone with minor shale partings. This formation ranges from micritic limestone to a coarse grainstone with abundant reworked clasts and calcareous fossils. Locally, the Bobcaygeon Formation is bounded by a fault along the Napanee River, which runs along the south of the Site.

2.3 Environmental Setting

Natural features in the vicinity of the Study Area include the following:

- a) The Napanee River is located directly south of the Site and flows in a general southwesterly direction.
- b) Wetlands classified as Provincially Significant are located along the north and south banks of the Napanee River. Wetlands near the north bank are located directly adjacent to the southern boundary of the Site.
- c) Multiple wooded areas are located within the Study Area. The closest wooded area to the Site is located approximately 100 m west of the Site.

The Site and Study Area are located within the Lower Napanee Subwatershed of the Napanee Region Watershed and are located within land regulated by Quinte Conservation. The Site is not located within the designated areas of the Oak Ridges Moraine Conservation Act or Niagara

¹ Chapman, L.J. and Putnam, D.F. 1984. The Physiography of Southern Ontario, Ontario Geological Survey Special Volume 2, Third Edition. Accompanied by Map P.2715, Scale 1:600,000.

² Leyland, J.G., Russell, T.S., 1983: Geological series, Quaternary geology, Bath-Yorkshire Island area, southern Ontario; Ontario Geological Survey, Map 2588, Quaternary Geology Series, scale 1:50,000.

³ Carson, D.M., 1982: Paleozoic Geology of the Bath-Yorkshire Island Area, Southern Ontario, Ontario Geological Survey, Map P2497, Geological Series-Preliminary Map, Scale 1:50,000.

Escarpment Planning and Development Act. The Site does not lie within a designated Source Water Protection Area or wellhead protection area. The Site lies within an Intake Protection Zone 3. An Intake Protection Zone refers to an area of land and water around a municipal intake pipe that collects surface water for drinking water purposes. Intake Protection Zone 3 refers to an area where contaminants could reach the potable water intake pipe during and immediately after a large precipitation event.

2.4 MECP Well Records Review and Status

The available records of wells within a 500 m radius of the Site were obtained from the MECP's online well record database. These well records include all recorded wells regardless of their current status.

In total, 39 recorded wells were located within the 500 m radius Study Area. The approximate locations of the wells are shown on Drawing 30726-3 of Appendix A. A summary of well record details is provided in Table B1 of Appendix B.

There were 28 well records recorded as water supply for domestic, public, livestock, and commercial uses. For the remaining records, five records were for monitoring and test holes, one records list the use as 'not used', and five records have an unknown status.

2.5 Existing Water Taking Permits

A search of MECP's Permit to Take Water mapping application in April 2021 indicated no active permits were located within the Study Area. A search of MECP's Environmental Activity and Sector Registry (EASR) mapping application in April 2021 found no water taking registrations for the purpose of construction dewatering within the Study Area.

2.6 **Previous Investigation**

Three previous investigations have been completed on the WPCP Site which were provided by R.V. Anderson Associates for review and documented in the following reports:

- Geotechnical Investigation (DRAFT), Upgrades to Wastewater Treatment Plant, 300 Water Street West, Napanee, Ontario, by GHD dated June 21, 2018
- Geotechnical Investigation, Proposed Tank Installation, Napanee Plant, 300 Water Street by Inspec-Sol Inc, dated November 15, 1999
- Geotechnical Investigation, Stage 2 Contract Soil Investigation, by Site Investigation Services dated October 5, 1977

A total of 31 sampled boreholes were drilled as part of the referenced geotechnical investigations above. All boreholes from these investigations were reviewed and Boreholes BH1-17, BH13-17, BH14-17, MW15-17, BH16-17, MW17-17 BH18-17, BH19-17 and BH20-17 from the GHD investigation were considered most relevant to the current works and have been included in Appendix C along with the borehole location drawing. The previous investigations were used to provide supplemental bedrock and groundwater information for design and are noted in the summarized bedrock physical properties.

3. INVESTIGATION PROCEDURES

3.1 Geotechnical Drilling and Testing

The concurrent geotechnical field investigation was carried out between February 22, 2021, to March 2, 2021 and comprised installation of a total of 22 sampled geotechnical boreholes and 4 unsampled auger probes. A summary of borehole and auger probe details are provided in Table 3.1. Borehole details are provided in the Record of Borehole sheets included in Appendix C. The approximate locations of the current boreholes and auger probes are shown on the Borehole Location Plan, Drawing No. 30726-1 provided in Appendix A.

BH/Auger Probe No.	Northing (m)	Easting (m)	GS Elev. (m)	Term. Depth (m)	Term. Elev. (m)	MW Installed?
01	4900363.3	343393.4	80.9	10.2	70.7	N
02	4900376.0	343427.4	79.0	8.8	70.2	Y
03	4900314.4	343421.8	76.4	10.3	66.2	Y
04	4900313.1	343466.0	77.2	10.2	67.0	Y
05	4900278.5	343451.1	76.3	11.6	64.7	Ν
06	4900323.2	343358.1	78.5	5.8	72.7	Y
07	4900335.5	343376.2	78.5	5.9	72.6	Ν
08	4900312.0	343386.0	77.2	6.5	70.6	Ν
09	4900314.9	343400.5	76.8	2.9	73.9	N
10	4900286.0	343480.9	76.5	3.7	72.9	Ν
11	4900293.0	343503.0	76.4	3.7	72.7	Y
12	4900302.0	343528.0	76.4	3.7	72.7	Ν
13	4900388.5	343400.4	81.7	3.7	78.1	Ν
14	4900385.9	343445.9	80.4	3.7	76.7	N
15*	4900334.4	343401.2	77.7	6.3	71.4	Ν
16*	4900348.3	343451.0	78.2	7.8	70.4	N
17*	4900301.2	343445.0	76.5	9.8	66.7	Ν
18*	4900305.4	343483.5	76.9	11.3	65.6	N
19	4900314.3	343501.3	77.5	5.2	72.4	N
20	4900375.0	343378.0	80.0	2.9	77.1	Ν
21	4900395.1	343423.1	80.5	2.9	77.6	Ν
22	4900334.8	343465.,3	77.7	3.7	74.1	Ν
23	4900302.4	343359.7	77.5	2.9	74.7	N
24	4900283.0	343428.0	75.9	2.9	73.1	N
25	4900364.7	343500.3	77.7	8.2	69.5	N
26	4900345.9	343514.1	77.4	8.2	69.2	N

Table 3.1 – Borehole Details

Notes:

GS – Ground Surface

Term. – Termination

MW - Monitoring well

* - Auger probes to determine approximate bedrock depth.

The borehole and auger probe locations were established in the field by Thurber using a portable GPS receiver and verified relative to existing Site features. All borehole locations were cleared of utilities prior to commencement of drilling. The boreholes were repositioned as necessary in consideration of surface features, underground utilities, and overhead obstructions. Borehole

location coordinates are presented in the Universal Transverse Mercator (UTM) system (NAD83, CSRS 2010.0).

The boreholes and auger probes were advanced using hollow stem and solid stem augers, powered by track mounted CME 55 drill rigs operated by GET Drilling. At borehole locations soil samples were obtained at selected intervals using a 50 mm outside diameter split-spoon sampler driven in conjunction with the Standard Penetration Test (SPT). Bedrock core samples were recovered using NQ size diamond drill core barrels.

The field investigation was carried out under the full-time supervision of Thurber technical staff. Soil samples were identified, placed in labelled containers, logged in the field, and transported back to Thurber's laboratory in Oakville for further visual examination and laboratory testing, including moisture content, grain size distribution testing, and Atterberg limits. Where soil samples were selected for analytical testing, one portion of each soil sample was placed into a laboratorysupplied labelled glass jar or vial and stored on ice in an insulated cooler to maintain a cool environment for possible analytical testing. A second portion of the sample was placed inside a labelled plastic bag for screening of headspace soil vapours, visual assessment, classification of the soils and additional geotechnical laboratory testing. The recovered rock core samples were described and photographed in the field, packaged in core boxes, and transported back to Thurber's Oakville laboratory for further examination and testing.

3.2 Monitoring Well Installation

Monitoring wells were installed in selected boreholes to permit monitoring of the groundwater levels at the Site, to allow for water quality samples to be collected and submitted for analytical testing and to allow for single well response testing. The monitoring wells were installed by an MECP licensed well technician in accordance with O.Reg. 903, as amended. The monitoring wells consisted of 50 mm diameter PVC pipe with a slotted screen sealed at a selected depth within the borehole. The annular space of the borehole around the screen was backfilled with clean filter sand covered by a bentonite seal. The installation details are summarized in Table 3.2 below.

Borehole/	GS	Monitoring Well Tip		Slotted	Mid- Screen	Mid- Screen	Screened
Well No.	(m)	Depth (m)	Elev. (m)	Length (m)	Depth (m)	Elev. (m)	Material
02 Shallow	70.0	5.7	73.3	3.0	4.2	74.8	Silty Clay
02 Deep	79.0	8.8	70.2	2.4	7.6	71.4	Bedrock
03 Shallow	76.4	7.2	69.2	3.0	5.7	70.7	Silty Clay / Silt
03 Deep		10.3	66.2	2.4	9.1	67.4	Bedrock
04 Shallow	77.0	6.1	71.1	3.0	4.6	72.6	Silty Clay
04 Deep	11.2	10.2	67.0	3.0	8.7	68.5	Silty Clay
06	78.5	5.8	72.7	3.0	4.3	74.2	Silty Clay / Silty Sand
11	76.4	3.1	73.3	1.5	2.3	74.1	Sand / Silty Clay

Table 3.2 – Monitoring Well Details

Notes: GS – Ground surface

The remaining boreholes were backfilled with bentonite to the ground surface in general accordance with O.Reg. 903, as amended.

3.3 Water Level Monitoring

The groundwater conditions at the borehole locations were assessed during drilling by visual examination of the soil, the sampler and the drill rods as the samples were retrieved and when appropriate by measurement of the water level in the open borehole.

Water levels in the monitoring wells were measured using a water level meter upon completion of the monitoring well installations and on subsequent dates, as provided in Table 4.1 in Section 4.1. Water level monitoring is ongoing and one additional water level measurement will be collected in the fall season.

3.4 Ground Water Sampling and Chemical Analysis

Groundwater quality samples were collected from two selected wells for the purpose of considering disposal options and potential treatment needs at a preliminary level. The results

obtained herein were representative of the water sampled from the selected wells at the time of sampling and provide a general understanding of groundwater quality under those conditions; however, the water quality may vary significantly from the results obtained based on location, time, meteorological conditions, and in particular based on construction and dewatering methods. The extent of suspended solids in the groundwater or in water that is collected during construction dewatering (for example from a sump in an open excavation) will significantly affect the concentrations of many parameters that may be regulated based on discharge location, particularly metals. The value of testing groundwater quality during the investigation is primarily to identify the types of contaminants that may need to be managed, the extent to which they are dissolved and therefore unlikely to be filtered by physical means alone, and the presence of anthropogenic contaminants that are listed in the given discharge criteria that may require specific treatment.

The monitoring wells were developed prior to sampling to remove excess sediment that may have entered the well during installation, to increase the representativeness of the natural groundwater in the well and to improve the transmissivity of the sand pack and well screen. Prior to any sampling or in-situ testing, the wells were purged dry, or until at least three well volumes had been removed and general chemistry parameters (pH, temperature and conductivity) were monitored with a hand-held meter to ensure consistency in addition to visual observations of turbidity.

Groundwater quality samples were collected from two monitoring wells installed in the boreholes listed in Table 3.2 (04 Deep and 06). The groundwater samples were collected using a dedicated bailer and, where required, a dedicated inline disposable 0.45 µm metals filter. The samples were collected into prepared laboratory sample bottles, stored in an insulated cooler with ice to keep the samples cool for transportation to Thurber's laboratory and subsequent submission to ALS Laboratory Group (ALS) for analysis. ALS is a Canadian Association for Laboratory Accreditation (CALA) accredited laboratory.

The selected groundwater samples were submitted for analysis for metals and inorganics, major anions and cations, general chemistry parameters, and parameters required for the Greater Napanee Sewer-Use By-law (No. 2012-39). The samples were analyzed and compared to the PWQOs and interim PWQOs, and Greater Napanee Sewer-Use By-law (No. 2012-39).

In addition, field-filtered metals samples were collected from each sampled monitoring well and submitted in comparison to PWQO metal limits. The filtered samples are a preliminary measurement of dissolved (based on a 0.45-micron filter), and assumedly not physically filterable, metal parameters.

3.5 Single Well Response Tests

Single well response tests ("slug" tests) were carried out in the eight 50-mm diameter wells installed in the geotechnical boreholes. The wells were screened in various materials including, silty clay, sand, silt some sand, and limestone bedrock. A summary of the tests completed, and the depths and screened materials is presented in Table 4.2. Results of the single well response tests can be found in Appendix D.

The tests were completed using the following method:

- In advance of conducting the slug tests, the monitoring wells were developed and purged, as noted above.
- Once the water level returned to a stabilized level, the static water level was measured and recorded, and a datalogger was inserted into the well below the water level. The datalogger was set to record water levels every 0.5 1 seconds, depending on the anticipated rate of recovery of each well.
- A slug of groundwater was removed from the well with a dedicated bailer for each well to induce a change in hydraulic head (rising head test).
- Manual and electronic measurements were recorded until the water level in the well recovered sufficiently.
- Manual measurements were compared to electronic measurements for quality control of the data.

4. TESTING RESULTS AND ANALYSIS

4.1 Water Level Monitoring

A summary of the groundwater levels recorded in the monitoring wells is provided in Table 4.1. Groundwater levels that are not under the influence of water taking or dewatering will fluctuate naturally over time, as a function of a number of factors including intensity, duration, and frequency of precipitation events as well as temperatures, which affect precipitation type and timing of snowmelt and accumulation.

Borehole/Monitoring Well No	Mid Screen Depth (m)	Mid Screen Elev. (m)	Screened Material	Date	WL Depth (m)	WL Elev. (m)
				February 26, 2021	0.7	78.3
				March 12, 2021	0.6	78.4
02 Shallow	4.2	74.8	Silty Clay	April 14, 2021	0.6	78.4
				May 11, 2021	0.5	78.5
				July 30, 2021	0.6	78.4
				February 26, 2021	0.8	78.2
			1 :	March 12 2021	0.7	78.3
02 Deep	7.6	71.4	Limestone	April 14, 2021	0.8	78.2
			Dedrock	May 11, 2021	0.6	78.4
				July 30, 2021	0.8	78.3
				February 26, 2021	0.2	76.3
				March 12, 2021	-0.2	76.7
03 Shallow	5.7	70.7	Silty clay and	April 14, 2021	-0.1	76.5
			siit some sanu	May 11, 2021	-0.2	76.7
				July 30, 2021	0.0	76.4
				February 26, 2021	-0.2	76.6
		67.4	Limestone	March 3, 2021	0.7	75.8
03 Deep	9.1		Bedrock	April 14, 2021	0.6	75.9
			Deulock	May 11, 2021	0.5	76.0
				July 30, 2021	0.5	75.9
	4.6	76.6	Silty clay	February 26, 2021	2.9	74.3
				March 12, 2021	1.0	76.1
04 Shallow				April 14, 2021	1.2	75.9
				May 11, 2021	1.0	76.2
				July 30, 2021	1.3	75.9
				February 26, 2021	1.8	75.4
				March 2, 2021	1.8	75.4
04 Deep	8.7	68.5	Silty clay	April 14, 2021	1.8	75.4
				May 11, 2021	1.6	75.6
				July 30, 2021	1.6	75.5
				February 26, 2021	-0.8	79.3
			Silty clay and	March 12, 2021	-1.0	79.5
06	4.3	74.2	silty sand	April 14, 2021	-0.8	79.3
			only band	May 11, 2021	-0.9	79.4
				July 30, 2021	-0.8	79.3
				February 26, 2021	2.2	74.2
			Sand and silty	March 2, 2021	2.1	74.3
11	2.3	74.1	clav	April 14, 2021	2.1	74.3
				May 11, 2021	2.1	74.3
				July 30, 2021	2.1	74.3

Table 4.1 – Groundwater Levels and Observations

4.2 Hydraulic Conductivity

A total of eight slug tests were completed and analyzed using the Hvorslev method. The test results indicated that the hydraulic conductivity of the screened formations ranged from 1.9×10^{-8} m/s to 5.5×10^{-6} m/s. Plots of the slug test results are included in Appendix D. The hydraulic conductivity values calculated from the in-situ slug tests are summarized in Table 4.2.

Monitoring Woll	Screen I	Depth (m)	Hydraulic	Dominant Screened Formation	
Monitoring weil	Тор	Bottom	Conductivity (m/s)		
02 Shallow	2.7	5.7	5.5 E-06	Silty clay, frequent sand seams	
02 Deep	6.4	8.8	2.5 E-07	Limestone bedrock	
03 Shallow	4.2	7.2	2.0 E-06	Silty clay and silt some sand	
03 Deep	7.9	10.3	2.5 E-06	Limestone bedrock	
04 Shallow	3.1	6.1	1.9 E-08	Silty clay	
04 Deep	7.1	10.1	2.3 E-06	Silty clay, frequent silt/sand lenses	
06	2.8	5.8	1.4 E-06	Silty clay and silty sand	
11	1.5	3.0	4.4 E-06	Sand, some silt and silty clay	

Table 4.2 – Summary of In-Situ Hydraulic Conductivity Test Results

Six slug tests were conducted in the silty clay and sand overburden, and the largest tested value of 5.5×10^{-6} m/s was selected for dewatering estimates. Two slug tests were conducted in the limestone bedrock and the largest tested value of 2.5×10^{-6} m/s was selected for dewatering estimates.

4.3 Groundwater Quality Results

As described in Section 3.4, groundwater quality samples were collected from two monitoring wells installed in the boreholes listed in Table 3.2 (06 and 04 Deep) using bailers. In addition, two field filtered metals samples were submitted from the above-mentioned wells for analysis of metals for PWQO metals limits as a preliminary measurement of dissolved, and assumedly not physically filterable, parameters.

Exceedances of the above standards within the groundwater analytical results are discussed below. A summary of the exceedances and the Certificates of Analysis are provided in Appendix E.

It should be noted that a limited number of groundwater samples were collected and the samples are only representative of groundwater found at the well screen depths.

PWQO and Interim PWQO

Testing of groundwater samples for comparison to the PWQOs and Interim PWQOs comprised analysis of general chemistry and selected metals and inorganic parameters. Not all parameters in the PWQOs were analyzed.

Multiple parameters exceeded the PWQO in the unfiltered samples from 06, including the following: iron, nickel, silver, and zinc. No parameters exceeded the PWQO in the unfiltered samples from 04 Deep. Multiple parameters exceeded the interim PWQO limits in the unfiltered samples from both 06 and 04 Deep, including aluminum, cobalt, copper, lead, phosphorus, thallium, vanadium, and zinc. Phosphorus exceeded the interim PWQO of 0.01 mg/L, which is set as a high level of protection against aesthetic deterioration, the interim PWQO of 0.02 mg/L to avoid nuisance concentrations of algae in lakes, and the interim PWQO of 0.03 mg/L to avoid excessive plant growth in rivers and streams.

On review of the filtered analytical results, including dissolved parameters, filtering lowered most parameters concentrations below the PWQOs, with a few exceptions. In the filtered samples from 04 Deep, cobalt exceeded the interim PWQO. Concentrations of phosphorous (dissolved) were measured at non-detectable concentrations from the unfiltered samples from both 06 and 04 Deep, but the detection limits are above the interim PWQOs of 0.01 mg/L, 0.02 mg/L, and 0.03 mg/L discussed above.

Groundwater of the quality that was observed herein could not be discharged to the natural environment without pre-treatment. Further, the above results suggest that while filtration may have removed some metals, it did not lower all parameters to within the interim PWQOs.

Greater Napanee Sewers By-Law

The results of the unfiltered groundwater samples analyzed in comparison to the Greater Napanee Sewers By-law met the sanitary/combined limits for all tested parameters but did not meet the storm limits for manganese, phosphorus, total suspended solids, and zinc.

Groundwater of the quality that was observed herein could not be discharged to the storm sewer without pre-treatment.

5. DEWATERING ASSESSMENT

5.1 Construction Dewatering

Groundwater taking for construction dewatering is governed by the Ontario Water Resources Act (OWRA), Environmental Protection Act (EPA) and the Water Taking and Transfer Regulation 387/04, a regulation under the OWRA. If the water taking rate will be greater than 50,000 L/day and less than 400,000 L/day, then registration on the Environmental Activity and Sector Registry (EASR) will be required. If the water taking rate will be greater than 400,000 L/day, then a Category 3 Permit to Take Water (PTTW) will be required.

Assessment of the need for a Category 3 PTTW or registration on the EASR is provided, based on dewatering estimates presented herein. For the purposes of estimating water taking, the estimated withdrawal rates are conservatively assessed in order to reduce the likelihood that actual pumping rates might exceed the permit allowance thereby stopping work and delaying the Project.

Based on design information available to date, it is understood that structures that may require dewatering include the Maintenance Building, the Two-storey Headworks Building, the Water retaining tanks, Tertiary/Ultraviolet Disinfection Building, and the Outfall pipe. It is our understanding that the Site-wide access roads will not require excavations below grade; therefore, no dewatering is expected for these two upgrades. It is assumed that the Water retaining tanks, Headworks Building, and Tertiary/Ultraviolet Disinfection Building will be constructed within a single excavation; therefore, the dewatering flow rate is calculated for a combined excavation for these features. The estimated dimensions of the aforementioned construction features are summarized below:

- Maintenance Building will be constructed slab-on-grade, with foundations expected to extend approximately 1.5 m below ground surface. The excavation will be for trench and column footings and the trench for the footings is assumed to be 110 m x 2 m.
- The foundations for the Water retaining tanks, Headworks Building, and Tertiary/Ultraviolet Disinfection Building, will be constructed within one open cut excavation. The footprint of the excavation is assumed to be approximately 115 m x 50 m and the base of the bulk excavation is assumed to be at Elev. 71.7 m.
- The trench for the Outfall pipe is assumed to be 2 m deep with a footprint of 55 m x 2 m.

The expected soil and groundwater conditions at the excavations are assumed based on the on the subsurface conditions encountered in the boreholes, as summarized in the profile drawings in Appendix A. The excavations are expected to extend through the surficial pavement structure or topsoil, fill, and into the overburden comprised of primarily silty clay with occasional silt and sand layers and extending into limestone bedrock. A summary of the excavation details, anticipated soil and groundwater conditions, and anticipated basal stability is provided in Table 5.1.

Excavation	Approx. Depth (m)	Approx. Base Elev. (m)	Borehole No.	Anticipated Ground Conditions at Base of Excavation	Ground- water Depth (m)	Assumed Highest Ground- water Elev. (m)	Risk of Basal Stability Issues	Target Dewater Elev. (m)
Maintenance Building	1.5	77.0	06, 07, 08	Silty clay	-1.0	79.5	Low	76.0
Combined Excavation for Tanks, Headworks & Tertiary Bldgs.	8.6	71.7	01, 02, 03, 04, 05, 10, 13, 16, 17, 18, 21, 22	Limestone in the north, silty clay in the south	-1.0	79.5	High due to Potential for Blow- up where excavation terminates in silty clay in southern portion of excavation	70.7
Outfall pipe	2	74.4	10, 11, 12	Silty sand and silty clay	-1.0	79.5	High due to Potential for Blow- up in areas where the excavation terminates in clay, piping in areas where the excavation terminates in sand	73.4

Table 5.1 – Summary of Excavations and Dewatering Conditions

For the purposes of this report and the table above the definitions of piping is as follows:

- Piping: Piping is a basal instability issue that develops when the base of the excavation is excavated in non-plastic soils and the groundwater level is above the base of the excavation. Groundwater will tend to flow into the base of the shaft creating quick conditions.
- Blow-up/Heave: Blow-up/heave is a basal instability issue that develops when the base of the excavation is excavated in plastic soils and there is an underlying non-plastic layer with sufficient pressure. This may cause the soil at the base of the shaft to blow-up or heave into the shaft.

The following approach was used to estimate the budgeted peak water taking rate:

- A base groundwater extraction flow rate was estimated, and a factor of safety of three was applied to this flow rate to provide an allowance for removal of water from aquifer storage, variation in hydraulic conductivity, actual excavation dimensions and geometry, and ground water levels due to seasonality or other factors;
- An allowance for removal of rainfall into the excavation was included, assuming 24 hours are used to remove 50 mm of rainfall; and
- Lowering of groundwater to about 1 m below the base of the excavation to facilitate a dry, stable work area was assumed.
- For the combined Excavation for Water retaining tanks, Headworks Building and Tertiary/Ultraviolet Disinfection Building, two dewatering estimates were prepared. One estimate assumes non-watertight shoring is used and the other estimate assumes watertight shoring is used. Due to the highly compressible soils on Site and the proximity of settlement-sensitive structures in relation to the excavation, non-watertight shoring is not recommended. The non-watertight scenario is presented in Appendix F for reference purposes only.

Dewatering rates were estimated using the Dupuit analytical solution. The radius of influence was calculated using the Sichardt equation. The calculation details including all the parameters used are presented in Appendix F.

A review of the ROI and the geologic profile indicated that surface water bodies exist within the zone of influence of excavations for the Combined Excavation for Water retaining tanks, Headworks Building, and Tertiary/Ultraviolet Disinfection Building and for the Outfall pipe. The presence of the surface water bodies may act as a potential line source and recharge boundaries to the dewatering aquifer around each excavation. The degree of connection between the surface water and the groundwater is expected to be high. The rate of recharge for those excavations will be higher due to the proximity to surface water bodies. Estimated peak flows for these locations were calculated by substituting the value of the radius of influence with the distance from the excavation to the water body.

The estimated peak flow rate for the or the Combined Excavation for Water retaining tanks, Headworks Building, and Tertiary/Ultraviolet Disinfection Building assuming non-watertight shoring was over 1,600,000 L/day. However, as noted previously, this value is provided for reference purposes only. Non-watertight shoring is not recommended due to the large flow rates, required drawdown, highly compressible overlying soils, and nearby settlement sensitive structures including three existing digesters.

It is recommended that watertight shoring walls socketed into bedrock be used for the Combined Excavation for Water retaining tanks, Headworks Building and Tertiary/Ultraviolet Disinfection Building to reduce groundwater extraction flow rates, drawdown levels outside the shoring, and therefore to reduce the likelihood of settlement of the compressible Site soils. The excavation for the water tanks is anticipated to extend into limestone. It is recommended that the watertight shoring walls be extended a minimum of approximately 1 m into limestone bedrock to cut off the overburden.

It is expected that higher anticipated flow rates will occur at the north end of the Support of Excavation (SOE) enclosure due to shorter SOE depth. Mitigation options to decrease flow rates at the north end include grouting of bedrock fractures and application of approximately 50 to 100 mm of shotcrete to the bedrock walls and a mud slab over the rock to reduce groundwater flow.

It is recommended that water taking occur from the interior of the SOE enclosure only by passive relief wells or pumping of groundwater from the base of the excavation, as active dewatering of the overburden could cause ground surface settlement. In addition, a mud slab may be installed to cover the entire excavation floor in order to ensure a stable base and to reduce upward groundwater flow.

Conservative estimation of water taking for the purpose of a PTTW application was conducted assuming watertight shoring in the soil and accounting for flow through a 3-m vertical interval below the excavation. In practice the dewatering would consist of sumps and passive relief wells within the SOE enclosure. The estimated base groundwater flow, peak groundwater flow and radii of influence for the excavations for the Maintenance Building, Outfall pipe, and Combined Excavation for Water retaining tanks, Headworks Building, and Tertiary/Ultraviolet Disinfection Building using watertight shoring are summarized in Table 5.2, below. The calculations and equations for the peak flow rate and radius of influence are provided in Appendix F.

Excavation Location	Base Groundwater Flow (L/day)	Groundwater Flow with Safety Factor of 3 (L/day)	Stormwater Allowance (L/day)	Estimated Peak Flow Rate (L/day)	Approx. Radius of Influence (m)
Maintenance Building	31,000	93,000	11,000	104,000	25

Table 5.2 – Construction	Dewatering Estimate
--------------------------	----------------------------

Excavation Location	Base Groundwater Flow (L/day)	Groundwater Flow with Safety Factor of 3 (L/day)	Stormwater Allowance (L/day)	Estimated Peak Flow Rate (L/day)	Approx. Radius of Influence (m)
Combined Excavation for Tanks, Headworks & Tertiary Bldgs. using watertight shoring	109,000	327,000	288,000	615,000	42
Outfall pipe	55,000	165,000	6,000	171,000	43
Total	195,000	585,000	305,000	890,000	As above

Table 5.2 – Construction Dewatering Estimate

The total base groundwater flow from all the excavations is approximately 195,000 L/day. With a safety factor of three on groundwater flow and a rainfall removal allowance of 50 mm in 24 hours, the estimated peak flow rate flow is approximately 890,000 L/day. Since the combined discharge rates for the subject construction dewatering using watertight shoring are expected to be greater than 400,000 L/day and the radii of influence overlap, a Category 3 PTTW will be required prior to commencing excavations. The maximum radius of influence of the dewatering for a single excavation was estimated to be 43 m.

Considering the large reduction in flow rates estimated for the watertight shoring dewatering model as compared to the non-watertight scenario for the combined excavation for the Water retaining tanks, Headworks Building, and Tertiary/Ultraviolet Disinfection Building, and the highly compressible Site soils, it is recommended watertight shoring be used for this excavation in order to cut-off groundwater flows from the sand/silt layer encountered on top of bedrock. Active dewatering of this layer is not recommended as groundwater drawdown within the clay deposit could cause ground surface settlement. Secant pile walls socketed a minimum of 1 m into the limestone bedrock is considered a feasible option for the support system.

In the north part of combined excavation for the Water retaining tanks, Headworks Building, and Tertiary/Ultraviolet Disinfection Building where the excavation extends into the bedrock, concentrated seepage may be experienced from fractures and cavities within the limestone bedrock. Grouting of fractures may be required to reduce the flow. The contractor should be prepared to pump groundwater from the bedrock out of the excavation; however, the primary method of groundwater control for this situation must be grouting of fractures in order to limit drawdown in the compressible overburden soils.

In the southern portion of the combined excavation for the Water retaining tanks, Headworks Building, and Tertiary/Ultraviolet Disinfection Building where the base of the excavation will consist of silty clay, the sand/silt layer and the bedrock will need to be depressurized to prevent subgrade disturbance due basal heave. This could be accomplished using passive relief wells located inside the excavation. The use of passive relief wells is recommended as active dewatering is expected to cause settlement. The design of the dewatering system is the responsibility of the contractor. The contractor should retain a specialized dewatering subcontractor to design the passive relief wells which will need to remain operational and effective until the tanks and buildings are in place and then should be decommissioned and removed. The design of the system should follow OPSS.MUNI 517. The dewatering plan should be reviewed by qualified geotechnical/hydrogeological personnel retained by the owner to confirm that the contractor's dewatering plan meets the design intent, prior to the commencement of excavations.

5.2 Permanent Drainage

It is our understanding that all the structures will be constructed watertight below grade, designed to resist uplift, with no permanent drainage of groundwater.

6. IMPACT ASSESSMENT

Within the construction dewatering zone of influence, impacts such as ground settlement, reduction in groundwater flow to groundwater users and watercourses, and other impacts may potentially occur. The potential impacts are discussed herein, and monitoring and potential mitigation measures are discussed in the following section.

6.1 Geotechnical Impacts (Not Completed)

Not completed at the time of this draft submission.

6.2 Impacts to Surface Water and Natural Environment

As described in the previous section, the Napanee River is within the zone of influence of the proposed dewatering activities. Reduction of groundwater discharges to surface water flow, to some extent, may occur due to groundwater extraction. Based on the Quinte Conservation surface water monitoring gauge for the Napanee River located in the Hamlet of Camden East, approximately 14.5 km upstream from the Site, Napanee River has an average flow rate 2.11 m³/s, or approximately 182,304,000 L/day. The maximum combined dewatering rate for the proposed work excluding stormwater is 585,000 L/day, or approximately 0.3% the average daily flow of Napanee River. Therefore, the magnitude of the impact is expected to be negligible due

to the large volume of water in the Napanee River relative to estimated dewatering volumes. It is also noted that following treatment, the water will be returned to the river.

Groundwater of the quality that was observed herein could not be discharged to the natural environment without pre-treatment due to exceedances of the PWQO and interim PWQO and could not be discharged to the Greater Napanee storm sewer without pre-treatment due to exceedances above the Greater Napanee Strom Sewer Use Limit. A water treatment specialist or qualified process engineer must be consulted regarding potential treatment options.

6.3 Impacts to Water Well Users

Construction dewatering with watertight soil shoring is expected to result in a maximum radius of influence of approximately 43 m. Dewatering activities may impact the quantity and/or quality of water obtained by water well users within the radius of influence.

Permanent drainage is not anticipated and thus permanent impact to existing water well users is not anticipated.

As noted in Section 2.4, there were 28 well records within the Study Area listed as water supply for domestic, public, livestock, and commercial uses. Temporary dewatering activities may impact water well users within the respective radii of influence, including impacting the quality or quantity of drinking water. The magnitude of any drawdown and the relative impact is anticipated to decrease as the distance between the well and the edge of the excavation increases.

A pre-construction, construction stage, and post-construction monitoring program should be conducted for properties on the north side of the Napanee River within 130 m (approximately 3 times the radius of influence) of the Site. Wells on the south side of the Napanee River are not expected to be affected by dewatering. The results of the monitoring program will assist in verifying potential impacts on well users and provide the data required to document the effects, where permission is given by residents to monitor their wells. Remedial measures that the Town of Greater Napanee may consider for affected well users include the provision of potable water or assistance with improving or restoring well productivity.

6.4 Other Potential Impacts

With prolonged dewatering activities there can be potential for inorganic or organic chemical compounds present within the radius of influence to migrate and to enter open excavations where sufficient flow rate and time permit. Considering the temporary duration of dewatering activities, as well as the limited commercial and industrial development in the area with the exception of the WPCP, there is a low likelihood that contaminants would be mobilized during dewatering activities; however, a contaminant overview would be required to confirm this. If any

contaminated groundwater is collected from the dewatering operations it should be treated to meet any discharge criteria or disposed of at a facility licensed to handle such materials. It is noted that dewatering will occur over a limited duration for construction purposes only, and no permanent drainage conditions are anticipated.

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Category 3 Permit To Take Water

As described previously, the estimated peak water taking rate with watertight shoring keyed into the limestone for all excavations was 890,000 litres per day.

Application for a Category 3 Permit To Take Water (PTTW) from the MECP will be required prior to the excavation at each shaft location. The permit application fee from MECP is currently \$3,000 and the application will be subject to an administrative review as well as a technical review. MECP may request additional information or testing. The review process typically takes three to five months following submission.

The PTTW will include terms and conditions that must be met, which will include performance, monitoring and reporting requirements among others.

7.2 Discharge of Groundwater

Groundwater of the quality that was observed herein could not be discharged to the natural environment without pre-treatment due to exceedances of the PWQO and interim PWQO as discussed in Section 4.3. If considering discharge to the natural environment, additional treatment is anticipated to be required. It is anticipated that sediment control alone will be insufficient to address all exceedances identified. A water treatment specialist or qualified process engineer must be consulted regarding potential treatment options. Discharge of groundwater to the natural environment may require approval by Quinte Conservation, MECP and potentially the Ministry of Natural Resources and Forestry (MNRF), and the Department of Fisheries and Oceans (DFO). As noted previously in Section 2.3, a provincially significant wetland is present adjacent to the Site along the edges of the Napanee River and additional restrictions in regard to discharge near the wetland may apply. The effects of discharge water temperature and the impacts to the natural environment are beyond the scope of this investigation.

Groundwater of the quality that was observed herein could not be discharged to the Greater Napanee storm sewer without pre-treatment, but could be discharged to the Napanee sanitary sewer based on the samples that were submitted and analyzed. Treatment to meet storm limits may require advanced treatment in addition to sediment control/filtration due to dissolved metals.

A water treatment specialist or qualified process engineer must be consulted regarding potential treatment options. Prior to discharge, a discharge agreement must be obtained from the Town of Greater Napanee and it must be verified that the sewer system has capacity for the proposed discharge volume. Sediment in pumped groundwater should be minimized prior to discharge. Additional testing of actual pumped groundwater would need to be conducted prior to discharge to confirm that the pumped groundwater is in accordance with the By-Law criteria.

As noted previously, water quality observed during construction will vary from the results obtained herein based on a number of factors. An experienced dewatering contractor and water treatment contractor are recommended to be retained to design and operate dewatering and/or treatment operations as required.

7.3 Proposed Monitoring Plan

A proposed monitoring plan is provided in the sections below with the understanding that the Contractor's means and methods are not known and that the monitoring plan may need to be adjusted and further specified once additional details are available.

7.3.1 Groundwater Taking

The quantity of water taken every day must be measured and recorded. A condition of the PTTW will be to report the water quantity actually taken, for each individual day that water has been taken. The quantity of water taken must not exceed the maximum permitted value.

7.3.2 Groundwater Quality

The table below provides a proposed water quality monitoring plan, along with timing and frequency of measurements and observations. However, implementation would need to be adjusted to the contractor's means and methods that takes into account method of dewatering, number of locations being simultaneously dewatered, discharge type (natural environment or sewer), number of discharge locations, and additional constraints that may be applied by the PTTW and any discharge agreements, permits, and external agencies.

More frequent monitoring is required whenever there is a substantial change in condition. Examples would include a new water taking extraction area, a modification to the treatment process, a change in the nature of the water being collected (e.g., a new contaminant or large change in concentration of an existing contaminant) or a new discharge location. It is anticipated that there would be one water taking location for the purpose of the PTTW, which encompasses all assessed excavations.

The following general monitoring is recommended in Table 7.1, in addition to requirements from permits, agreements or external agencies, for each initial condition or substantial change in condition.

Table 7.1 -	- Monitoring	Plan

Monitoring Activity	Minimum Monitoring Frequency
Visual check for excessive sediment in discharge and	Twice daily during active construction; once
measurement of Turbidity using handheld device.	daily while system running but no active
Record findings. Check for erosion.	construction.
Sample discharge for TSS	Daily for first week, then weekly.
Discharge compliance sampling in accordance with	Upon initiation, then weekly for 4 weeks, then
criteria for permitted/approved discharge location.	monthly.
Visual check of raw water being removed from	Twice daily during active construction; once
subsurface for excessive sediment or contamination	daily while system running but no active
such as chemical product or sheen.	construction.
Sample raw groundwater being extracted for Permit discharge parameters to identify changes in incoming groundwater quality.	Upon initiation and monthly thereafter, and as required by Permit.

The purpose of measuring TSS and Turbidity (NTU) daily for the first week is to prepare a correlation between TSS and NTU. The correlation should be updated periodically as new data become available. The NTU value that corresponds to any TSS limit required by the discharge location is herein referred to as NTU_{MAX}. If discharging to land that is at least 30 m away from any surface water bodies, it is recommended that the TSS limit be no higher than 25 mg/L, and possibly lower depending on Permit discharge criteria and external agencies.

7.3.3 Groundwater Level Monitoring

It is recommended that water levels in monitoring wells within the radius of influence of each extraction area be monitored weekly during construction and until full groundwater level recovery. A minimum of three monitoring wells for the Combined Excavation are recommended to be used, and at least one monitoring well be used for the Maintenance Building and Outfall pipe excavations each. If there is an insufficient number of pre-existing monitoring wells located in a

ROI area, it is recommended that additional monitoring wells are to be installed. Some wells may be used for multiple extraction areas if within the anticipated radius of influence.

It is recommended that the water levels in monitoring wells for the entire Site be monitored on a quarterly bases prior to, during, and shortly following construction, until full anticipated recovery.

7.3.4 Surface Water Monitoring

If discharging to land where runoff may reach surface water, it is recommended to sample surface water for the same parameters as the discharge criteria in addition to general chemistry parameters. Sampling timing would be the same as for the discharge sampling; that being upon initiation, then weekly for 4 weeks, and then monthly. This is in addition to discharge permit requirements, or any other requirements of approving agencies. Flow monitoring of surface water is not recommended as the impact of water taking on surface water flow volumes was estimated to be negligible.

7.3.5 Pre-construction Survey and Settlement Monitoring

It is recommended that a pre-construction survey be developed by a geotechnical engineer to determine pre-construction elevations of sensitive infrastructure and to recommend a monitoring plan during construction.

7.4 Proposed Contingency Plan

The recommended contingency plan is outlined in Table 7.2.

Observation / Parameter	Trigger(s)	Review Conditions	Possible Mitigations
Quality of raw water being taken	 Excessive solids observed visually. NTU value that is significantly greater than prior results for raw water. 	Concern for potential ground loss.	 Modify water intake setup, procedures and equipment to reduce solids intake. Stop dewatering operations until addressed, unless stopping would create safety risk. Modify dewatering means and methods.

able 7.2 – Con	tingency Plan
----------------	---------------

Observation / Parameter	Trigger(s)	Review Conditions	Possible Mitigations		
Quality of raw water being taken	 New significant contaminant identified or large increase in known contaminant 	 Assess potential sources of new impact. Assess risk of continuing to receive new contaminant and determine options for proceeding. 	 Modify intake procedures if possible. Reduce water taking rate if possible. Stop dewatering operations until addressed, unless stopping would create safety risk. Consider watertight excavation method or other alternatives for mitigating impact. 		
Quality of treated effluent being discharged	 Excessive solids observed visually. NTU value that exceeds NTU_{MAX}. TSS value exceeds discharge criterion. 	 Check raw water quality for changes and treatment system function. 	 Modify treatment system to reduce solids in effluent. Stop dewatering operations until addressed by further treatment modifications, unless stopping would create safety risk. 		
	Exceedance of discharge criteria	 Advise regulating body of any Permit exceedance, as required in the permit. Contractor review data and operations, and provide rationale or changes to rectify. 	 Once any changes made, resample effluent, raw water on rush analysis. If re-sampling exceeds, advise regulating body and stop dewatering operations until addressed by further treatment modifications, unless stopping would create safety risk. 		
Discharge location impacts contrary to Permit requirements	Erosion observed at discharge location	Make changes to erosion controls and re-evaluate.	Stop dewatering operations until addressed, unless stopping would create safety risk.		
Settlement	Settlement exceeds target levels set by engineer or infrastructure owner.	Promptly investigate structures for indications of damage.	Reduce water taking rate if safe to do so.		

Table 7.2 – Contingency Plan

Table	7.2 –	Contingency	Plan
-------	-------	-------------	------

Observation / Parameter	Trigger(s)	Review Conditions	Possible Mitigations		
			Consider watertight construction method or means of alternate support of affected structure.		

8. CLOSURE

We trust that this report provides the information you require at this time. If you have any questions regarding this report, please contact the undersigned at your earliest convenience.

Draft

Renato Pasqualoni, P.Eng. Review Principal

STATEMENT OF LIMITATIONS AND CONDITIONS

1. STANDARD OF CARE

This Report has been prepared in accordance with generally accepted engineering or environmental consulting practices in the applicable jurisdiction. No other warranty, expressed or implied, is intended or made.

2. COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment are a part of the Report, which is of a summary nature and is not intended to stand alone without reference to the instructions given to Thurber by the Client, communications between Thurber and the Client, and any other reports, proposals or documents prepared by Thurber for the Client relative to the specific site described herein, all of which together constitute the Report.

IN ORDER TO PROPERLY UNDERSTAND THE SUGGESTIONS, RECOMMENDATIONS AND OPINIONS EXPRESSED HEREIN, REFERENCE MUST BE MADE TO THE WHOLE OF THE REPORT. THURBER IS NOT RESPONSIBLE FOR USE BY ANY PARTY OF PORTIONS OF THE REPORT WITHOUT REFERENCE TO THE WHOLE REPORT.

3. BASIS OF REPORT

The Report has been prepared for the specific site, development, design objectives and purposes that were described to Thurber by the Client. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the Report, subject to the limitations provided herein, are only valid to the extent that the Report expressly addresses proposed development, design objectives and purposes, and then only to the extent that there has been no material alteration to or variation from any of the said descriptions provided to Thurber, unless Thurber is specifically requested by the Client to review and revise the Report in light of such alteration or variation.

4. USE OF THE REPORT

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT THURBER'S WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS THURBER MAY EXPRESSLY APPROVE. Ownership in and copyright for the contents of the Report belong to Thurber. Any use which a third party makes of the Report, is the sole responsibility of such third party. Thurber accepts no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without Thurber's express written permission.

5. INTERPRETATION OF THE REPORT

- a) Nature and Exactness of Soil and Contaminant Description: Classification and identification of soils, rocks, geological units, contaminant materials and quantities have been based on investigations performed in accordance with the standards set out in Paragraph 1. Classification and identification of these factors are judgmental in nature. Comprehensive sampling and testing programs implemented with the appropriate equipment by experienced personnel may fail to locate some conditions. All investigations utilizing the standards of Paragraph 1 will involve an inherent risk that some conditions will not be detected and all documents or records summarizing such investigations will be based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated and the Client and all other persons making use of such documents or records with our express written consent should be aware of this risk and the Report is delivered subject to the express condition that such risk is accepted by the Client and such other persons. Some conditions are subject to change over time and those making use of the Report should be aware of this possibility and understand that the Report only presents the conditions at the sampled points at the time of sampling. If special concerns exist, or the Client has special considerations or requirements, the Client should disclose them so that additional or special investigations may be undertaken which would not otherwise be within the scope of investigations made for the purposes of the Report.
- b) Reliance on Provided Information: The evaluation and conclusions contained in the Report have been prepared on the basis of conditions in evidence at the time of site inspections and on the basis of information provided to Thurber. Thurber has relied in good faith upon representations, information and instructions provided by the Client and others concerning the site. Accordingly, Thurber does not accept responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of misstatements, omissions, misrepresentations, or fraudulent acts of the Client or other persons providing information relied on by Thurber. Thurber is entitled to rely on such representations, information and instructions and is not required to carry out investigations to determine the truth or accuracy of such representations, information and instructions.
- c) Design Services: The Report may form part of design and construction documents for information purposes even though it may have been issued prior to final design being completed. Thurber should be retained to review final design, project plans and related documents prior to construction to confirm that they are consistent with the intent of the Report. Any differences that may exist between the Report's recommendations and the final design detailed in the contract documents should be reported to Thurber immediately so that Thurber can address potential conflicts.
- d) Construction Services: During construction Thurber should be retained to provide field reviews. Field reviews consist of performing sufficient and timely observations of encountered conditions in order to confirm and document that the site conditions do not materially differ from those interpreted conditions considered in the preparation of the report. Adequate field reviews are necessary for Thurber to provide letters of assurance, in accordance with the requirements of many regulatory authorities.

6. RELEASE OF POLLUTANTS OR HAZARDOUS SUBSTANCES

Geotechnical engineering and environmental consulting projects often have the potential to encounter pollutants or hazardous substances and the potential to cause the escape, release or dispersal of those substances. Thurber shall have no liability to the Client under any circumstances, for the escape, release or dispersal of pollutants or hazardous substances, unless such pollutants or hazardous substances have been specifically and accurately identified to Thurber by the Client prior to the commencement of Thurber's professional services.

7. INDEPENDENT JUDGEMENTS OF CLIENT

The information, interpretations and conclusions in the Report are based on Thurber's interpretation of conditions revealed through limited investigation conducted within a defined scope of services. Thurber does not accept responsibility for independent conclusions, interpretations, interpretations and/or decisions of the Client, or others who may come into possession of the Report, or any part thereof, which may be based on information contained in the Report. This restriction of liability includes but is not limited to decisions made to develop, purchase or sell land.

Appendix A Drawings

726 PM rafting\300 29, 2021 -FILENAME: H:\Di PLOTDATE: Jun

THURBER ENG	INEERING LTD.	
ENGINEER : RB	DRAWN : MFA	APPROVED : MTB
DATE : MAY 2021	scale : 1:400	DRAWING No. 30726-2

6-BHPI Ы : Jun 29, 2021 - { PLOTDATE:

.Υ	SIGNIFICANT	WEILAND	

FILENAM PLOTDA⁻

Appendix B

MECP Well Records

Well ID	Date Completed	Depth of Well (m)	Depth of Bedrock (m)	Static Water Level (m)	Final Status	UTM Zone	Easting	Northing
3701390	1949-02-01	16.76	5.18	12.19	Domestic	18	343242	4900530
3701637	1950-03-02	12.19	0.61	4.57	Public	18	343637	4900031
3701638	1951-04-07	45.72	0.91	44.81	Domestic	18	343679	4900100
3701639	1951-04-12	9.75	1.22	6.10	Domestic	18	343761	4900076
3701640	1956-11-14	21.34	0.00	15.24	Livestock	18	343513	4899863
3701641	1967-09-07	36.88	1.83	32.00	Domestic	18	343812	4900159
3701752	1962-08-22	19.81	2.44	10.97	Domestic	18	343507	4899857
3701956	1956-03-10	21.34	11.89	15.85	Domestic	18	342824.1	4900159
3701957	1959-04-17	19.51	10.36	18.29	Domestic	18	342909.1	4900274
3701958	1964-06-12	21.34	8.53	18.29	Domestic	18	342856.1	4900073
3701960	1964-09-11	18.29	13.11	13.72	Domestic	18	343160	4900320
3701988	1960-02-03	18.29	13.41	15.85	Domestic	18	343108	4900367
3703054	1970-08-29	66.45	1.83	30.48	Domestic	18	344070	4900281
3703164	1971-07-16	19.81	0.91	18.29	Domestic	18	343510	4899862
3703210	1971-05-19	25.91	2.44	21.95	-	18	342850.1	4900087
3703266	1971-07-26	24.38	1.83	35.66	Domestic	18	343780	4900041
3703536	1972-11-01	38.10	2.13	37.19	Domestic	18	343730	4899971
3703855	1973-06-05	40.23	1.83	35.05	Domestic	18	343589	4899768
3703920	1973-08-29	38.10	13.11	36.88	Domestic	18	343373	4900371
3703949	1973-10-24	29.57	26.82	28.65	Commerical	18	343275	4899907
3703958	1973-11-24	38.10	0.61	33.53	Domestic	18	343716	4900148
3703963	1973-08-08	25.91	1.22	22.86	Domestic	18	343586	4899769
3704075	1974-06-14	36.58	1.83	18.29	Domestic	18	343762	4900145
3704204	1974-03-04	25.91	1.52	24.08	Domestic	18	343641	4899853
3704353	1975-08-02	39.62	2.13	19.81	Domestic	18	343767	4900205
3704722	1976-06-28	32.00	1.52	15.24	Domestic	18	343680	4900021
3705635	1980-08-18	30.48	1.83	6.71	Domestic	18	343629	4900020
3709878	2004-03-18	3.35	N/A	-	Monitoring and Test Hole	18	343762	4900472
3709880	2004-03-16	4.57	N/A	-	Monitoring and Test Hole	18	343762	4900472
7119597	2008-11-21	6.40	N/A	-	Not Used	18	343546	4900444
7187236	2012-09-11	6.10	N/A	-	Monitoring and Test Hole	18	343885	4900104
7192221	2012-08-17	11.89	N/A	11.89	Domestic	18	343516	4900096
7225287	2014-05-12	2.84	N/A	-	Monitoring and Test Hole	18	343850	4900400
7280966	2017-01-18	7.62	2.74	-	Monitoring and Test Hole	18	344074	4900468
7290903	2017-05-19	-	-	-	-	18	343475	4900450
7312410	2017-11-28	-	-	-	-	18	343419	4900342
7332995	2018-12-14	2.44	N/A	1.25	-	18	343255	4899936
7332996	2018-12-14	2.44	N/A	1.29	-	18	343266	4899971
7337996	2019-07-19	49.38	-	41.15	Domestic	18	343736	4900161

Appendix C

Record of Borehole Sheets

SYMBOLS, ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES

1. TEXTURAL CLASSIFICATION OF SOILS

	CLASSI Boulders Cobbles	FICATION s	PARTICLE SIZE Greater than 200mm 75 to 200mm		VISUAL IDENTIFICATIO	DN
	Gravel Sand Silt		4.75 to 75mm 0.075 to 4.75mm 0.002 to 0.075mm		Not visible particles to 5mr Non-plastic particles, not v the naked eve	n isible to
	Clay		Less than 0.002mm		Plastic particles, not visible the naked eye	e to
2.	COARS	<u>E GRAIN SOIL DE</u>	SCRIPTION (50% greater than 0	<u>.075mm)</u>		
	TERMIN Trace or Some Adjectiv And (e.g	NOLOGY Occasional re (e.g. silty or sandy g. sand and gravel))		PROPORTION Less than 10% 10 to 20% 20 to 35% 35 to 50%	
3.	TERMS	DESCRIBING CON	SISTENCY (COHESIVE SOIL	<u>S ONLY)</u>		
	DESCRI Very So	IPTIVE TERM	UNDRAINED SHEA STRENGTH (kPa) 12 or less	R	APPROXIMATE SPT ⁽¹⁾ 'N VALUE Less than 2	,
	Soft Firm Stiff		12 to 25 25 to 50 50 to 100		2 to 4 4 to 8 8 to 15	
	Very Sti Hard	ff	100 to 200 Greater than 200		15 to 30 Greater than 30	
	NOTE:	Hierarchy of Soil St	trength Prediction 1), 2, 3, 4, 5,	Laboratory Triax Field Insitu Vane Laboratory Vane SPT value Pocket Penetrom	kial Testing e Testing e Testing neter	
4.	TERMS	DESCRIBING DE	NSITY (COHESIONLESS SOIL:	SONLY)		
	DESCRI Very Lo Loose Compac Dense Very De	IPTIVE TERM ose t nse	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50			
5.	LEGEN	D FOR RECORDS	OF BOREHOLES			
	SYMBC ABBRE FOR SAMPL	DLS AND VIATIONS E TYPE	SSSplit Spoon SampleWTWThin Wall Shelby Tube SaPHSampler Advanced by HycWHSampler Advanced by Sel	VS Wash Sample mple Iraulic Pressure f Static Weight	AS Auger (Grab TP Thin Wall Piston Samp PM Sampler Advanced by RC Rock Core) Sample ble Manual Pressure SC Soil Core
		Sensitivity =	Undisturbed Shear Strength			
	_		Remoulded Shear Strength			
	C _{pen}	Water Level Shear Strength De	termination by Pocket Penetrome	ter		
(1)	SPT 'N'	Value Standard	l Penetration Test 'N' Value – ref	ers to the number	of blows from a 63.5kg ham	nmer free falling a

height of 0.76m to advance a standard 50 mm outside diameter split spoon sampler for 0.3 m depth into undisturbed ground. (2) DCPT Dynamic Cone Penetration Test - Continuous penetration of a 50 mm outside diameter, 60° conical steel point attached to "A" size rods driven by a 63.5 kg hammer free falling a height of 0.76 m. The resistance to cone penetration is the number of hammer blows required for each 0.3 m advance of the conical point into undisturbed ground.

EXPLANATION OF ROCK LOGGING TERMS

ROCK WEATHERING	<u>G CLASSIFICATION</u> No visible signs of weatheri	no		SYMBOLS	
Fresh Jointed (FJ)	Weathering limited to the su	rface of major			
	discontinuities.	5			CLAYSTONE
Slightly Weathered	Penetrative weathering deve	loped on open	discontinuity		
(SW)	surfaces, but only slight wea	thering of rock	material.		SILTSTONE
Moderately Weathered (MW)	Weathering extends through rock material is not friable.	out the rock ma	ass, but the		SANDSTONE
Highly Weathered (HW)	Weathering extends through rock is partly friable.	out the rock ma	ass and the		COAL
Completely Weathered (CW)	Rock is wholly decomposed but the rock texture and stru-	and in a friable cture are preser	e condition, rved.		Bedrock (general)
DISCONTINUITY SP.	ACING	STRENGTH Bock	I CLASSIFIC	ATION A Uniovial	Field Estimation
Bedding	Bedding Plane Spacing	Strength	Compressiv	e Strength	of Hardness*
Vory thickly baddad	Greater than 2m	Extramely	(MPa) Greater than	(psi) Greater than	Specimon can only
very mickly bedded	Greater than 211	Strong	250	36,000	be chipped with a
Thickly bedded	0.6 to 2m				geological hammer
Medium bedded	0.2 to 0.6m	Very Strong	100-250	15,000 to	Requires many
Thinly bedded	60mm to 0.2m		~	36,000	hammer to break
Very thinly bedded	20 to 60mm	Strong	50-100	7,500 to	Requires more than
Laminated	6 to 20mm			13,000	geological hammer to break
Thinly Laminated	Less than 6mm	Medium Strong	25.0 to 50.0	3,500 to 7,500	Breaks under single blow of
<u>TERMS</u>					geological hammer.
Total Core Recovery: (TCR)	Core recovered as a percentage of total core run length.	Weak	5.0 to 25.0	750 to 3,500	Can be peeled by a pocket knife with difficulty
Solid Core Recovery: (SCR)	Percent Ratio of solid core of full cylindrical shape recovered. Expressed with respect to the total length of core run.	Very Weak	1.0 to 5.0	150 to 750	Can be peeled by a pocket knife, crumbles under firm blows of geological pick.
Rock Quality Designation: (RQD)	Total length of sound core recovered in pieces 0.1m in length or larger as a percentage of total core run length.	Extremely Weak (Rock)	0.25 to 1.0	35 to 150	Indented by thumbnail
Uniaxial Compressive Strength (UCS)	Axial stress required to break the specimen				
Fracture Index: (FI)	Frequency of natural fractures per 0.3m of core run.				

			RECO	OR	RD (OF BOREHOLE B	H-01		
PF	ROJEC	T : Napanee Water Pollutio	on Control P	lant	Expa	insion		Project N	lo. 30726
ST	ARTE	D : February 23, 2021	anee, On					SHEET 2	2 OF 2
CC	OMPLE	TED : February 23, 2021			N	4 900 363.3 E 343 393.4		DATUM	Geodetic
Ш	дон	SOIL PROFILE		SAN	MPLE:	S COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - X rem V - ♥ Cpen ▲	R R	
DEPTH SCA (metres)	BORING MET	DESCRIPTION	STRATA PLOT STRATA PLOT (m)	NUMBER	TYPE BLOWC/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	40 80 120 160 WATER CONTENT, PERCENT wp - O ^W wi 10 20 30 40	ADDITION/ LAB. TESTII	PIEZOMETER OR STANDPIPE INSTALLATION
			70.72		_			1	
- - -		END OF BOREHOLE AT 10.2m. BOREHOLE BACKFILLED WITH HOLEPLUG.	10.19						
- - 11									
-12									
-									
- 13 -								/	
-14									
- 15									
-16					4				
- 17				\langle					
						7			
-18									
-									
- 19									
11 049.07									
IURBERZS I		GROUNDWATER ELE ☐ WATER LEVEL UPON CC			Ţ	WATER LEVEL IN WELL/PIEZC	METER LOGGED : RB CHECKED : JDA/	МТВ	
± L									INUKBER

RECORD OF BOREHOLE BH-02												
PF	ROJEC	T : Napanee Water Pollutio	n Co	ontrol P	lant	Exp	ban	sion		Pr	oject N	o. 30726
ST	ARTE	D : February 22, 2021 ETED : February 23, 2021	ance	5, 011		١	14	900 376.0 E 343 427.4		Sł D/	HEET 2 ATUM	OF 2 Geodetic
щ	Ð	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KP nat V - Q - Conn	а	цŌ	
DEPTH SCA (metres)	RING METH	DESCRIPTION	RATA PLOT	ELEV. DEPTH	JUMBER	түре	OWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 16	0 IT	ADDITIONA AB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
			STF	(m)	2		BL	20 40 60 80 100)		
- - - - - - - - -		m slotted screen. DEEP WELL WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Feb 26/2021 0.8 78.20 Mar 03/2021 0.7 78.30 Apr 14/2021 0.6 78.40 SHALLOW WELL WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Feb 26/2021 0.7 78.30 Mar 12/2021 0.6 78.40 Apr 14/2021 0.6 78.40										
-12												-
- 13 - 13 -											2	
14												-
- 15 - -												
-16												-
- 17					\ \ \		/	2				
-18												-
- 19												
		GROUNDWATER ELE ☐ WATER LEVEL UPON CO	VA MPL	FIONS	S I	_	- V A	VATER LEVEL IN WELL/PIEZC pril 14, 2021	DMETER LOGGED : F	rb Ida/Mte	3	THURBER

			RE	CC	R	D	OF BOREHOLE	3H-03		
PR LO		T : Napanee Water Pollution	n Conti anee (rol Pla DN	ant Ex	xpar	ision		Project N	No. 30726
ST	ARTE	D : February 23, 2021	unee, c						SHEET	2 OF 2
CC	MPLE	TED : February 24, 2021				N 4	900 314.4 E 343 421.8		DATUM	Geodetic
Ш	ДОН	SOIL PROFILE			SAMF	PLES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲	μŰ	
DEPTH SCA (metres)	BORING MET	DESCRIPTION	STRATA PLOT	LEV. EPTH (m)	NUMBER	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 160 WATER CONTENT, PERCENT wp 00 00 00 00 00 00 00 00 00 00 00 00 00	ADDITION/ LAB. TESTI	PIEZOMETER OR STANDPIPE INSTALLATION
_										Г. <u>Н</u> . І
		END OF BOREHOLE AT 10.26m.		66.18 10.26					3	
- - - 11		Deep Monitoring Wells installation consists of 50mm diameter Schedule 40 PVC pipe with a 2.44m slotted screen. Shallow monitoring well installed in a								
- - -		separate borehole drilled approximately 1 m away from the sampled borehole. Shallow monitoring well installation consists of a 50mm diameter Schedule 40 PVC pipe with a 3.05m slotted screen.								
-12 - -		DEEP WELL WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Feb 26/21 -0.20 76.64 Mar 03/21 0.70 75.74 Apr 14/21 0.60 75.84								
- 13 - -		SHALLOW WELL WATER LEVEL READINGS: Feb 26/21 0.20 76.24 Mar 12/21 -0.20 76.64 Apr 14/21 -0.10 76.54								
-14 -		(Negative water level indicates water level measured above the ground surface)								
- - 15 -										
- 										
- 17										
- 					~					
- - - 19										
-30726.GP										
		GROUNDWATER ELE		DNS						
THURBER2S			MPLET	ION		▼ v ^	VATER LEVEL IN WELL/PIEZO	METER LOGGED : RB CHECKED : JDA	/MTB	THURBER

	PROJECT : Napanee Water Pollution Control Plant Expansion Project No. 30726											
PR		CT : Napanee Water Pollutio	on Co	ontrol P	Plant	Exp	pan	sion		Project	No. 30726	
ST	ARTE	ED : February 24, 2021	Jane	5, ON						SHEET	2 OF 2	
CC	MPL	ETED : February 24, 2021			1	1	N 4	900 313.1 E 343 466.0	SHEAR STRENGTH: CIL KPa	DATUN	/ Geodetic	
ALE	тнор	SOIL PROFILE	۲F		SA	MPL	.ES	COMMENTS	nat V - ♥ Q - X rem V - ● Cpen ▲	ING	PIEZOMETER	
TH SC metres	NG ME	DESCRIPTION	A PLO	ELEV.	ABER	PE	/S/0.3r	DYNAMIC CONE PENETRATION RESISTANCE PLOT			OR STANDPIPE	
DEF (BORII		STRAI	DEPTH (m)	NUN	Ѓ-	BLOV	20 40 60 80 100	wp I wi 10 20 30 40	AD	INSTALLATION	
			WX								<u>гн. 1</u> -	
		END OF BOREHOLE AT 10.16m UPON AUGER REFUSAL ON PROBABLE		10.16								
		BEDROCK. Deep Monitoring Well installation consists of										
- 11		50mm diameter Schedule 40 PVC pipe with a 3.05m slotted screen. Shallow monitoring well installed in separate										
		borehole drilled approximately 1m away from the sampled borehole.										
		of a 50mm diameter Schedule 40 PVC pipe with a 3.05 m slotted screen.										
		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m)										
-12		Feb 26/2021 1.8 76.36 Mar 02/2021 1.8 76.36 Apr 14/2021 1.8 76.36									-	
-		· SHALLOW WELL WATER LEVEL READINGS [·]										
		DATE DEPTH(m) ELEV.(m) Feb 26/2021 2.9 74.26 Mar 12/2021 1.0 76.16										
- 13		Apr 14/2021 1.2 75.96									-	
-												
-14											-	
-												
- 15												
						$\left \right $						
					A							
-16			\times								-	
-												
-					$\left \right\rangle$							
- 17								7			-	
-18											-	
				/								
$\left \right $												
- 19											· ·	
-												
											· ·	
			VA	TIONS	Ŝ	_	,			•		
		eq water level upon CC	MPI	ETION	1	7	۲ v	ATER LEVEL IN WELL/PIEZ		3		
							A	טווו ו4, 2021	CHECKED : JE	A/MTB	THURBER	

			F	REC	OF	RD) (OF BOREHOLE	BH-06			
Pf LC	ROJE DCAT	CT : Napanee Water Pollutio ION : 300 Water St West Nap	on Co anee	ontrol P e, ON	lant	Exp	pan	sion		Proje	ect N	Jo. 30726
ST CO	TART OMPI	ED : February 24, 2021 LETED : February 24, 2021				1	N 4	900 323.2 E 343 358.1		SHE DAT	ET 1 UM	1 OF 1 Geodetic
ш	8	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - 🍨 Q - 🗙	a .	.0	
DEPTH SCAL (metres)	BORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V - ● Cpen ▲ 40 80 120 160 1 1 1 1 WATER CONTENT, PERCENT wp → 0 ^W wl 10 20 30 40		LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	\square	GROUND SURFACE CLAY, silty, some gravel, trace sand,		78.49 0.00								
		some organics, occasional brick fragments firm, reddish brown, moist: (FILL)		77.83	1	ss	6		0	•		
- 1		CLAY, silty, trace sand, soft to stiff, brown, moist		0.66	2	ss	3		0			Bentonite
	n Augers							Grain Size Analysis:				
-2	Hollow Ster				3	SS	13	Gr 0%/ Sa 6%/ Si 56%/ Cl 38%	0 ~ 1			Filter Sand
-					4	SS	7					
- 3 -					5	ss	8					
- -4		SAND sitty some clay to clayery losse		74.38 4 11								
		brown, wet (bedded in 20 to 50 mm layers)		4.11				Grain Size Analysis:				Slotted Screen
- 5					6	SS	7	Gr 0%/ Sa 44%/Si 30%/ Ci 26%	0			
		END OF BOREHOLE AT 5.79m UPON		72.70 5.79								
-0		BEDROCK. Monitoring Wells installation consists of 50mm diameter Schedule 40 PVC pipe with a 3.05m slotted screen.										
- 7		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m)						7				
-		Apr 12/21 -0.29 76.73 Apr 12/21 -0.30 78.79 Apr 14/21 -0.24 78.74										
-8		(Negative water level indicates water level measured above the ground surface)										
- 9												
EL-30/26.G												
BERZS I		GROUNDWATER ELE Σ water level upon co	VA1 MPL	FIONS .ETION	5	<u> </u>	Z w	/ATER LEVEL IN WELL/PIEZC	METER LOGGED : RE	3		
									CHECKED : JD	A/MTB		THURBER

PR	OJE	CT : Napanee Water Pollutio	F on Co	REC	DF lant	RD	O pansi	F BOREHOLE B	SH-09	•		Р	roiect N	No. 30726
LC ST	CAT	ON : 300 Water St West Na ED : February 26, 2021	pane	e, ON								S	HEET	1 OF 1
CC	OMPL	ETED : February 26, 2021				1	N 4 9	00 314.9 E 343 400.5	SH	EAR STREN		D	ATUM I	Geodetic
DEPTH SCALE (metres)	BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER SA	MPL TYPE	BLOWS/0.3m	COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100 1 1	- r 40 	anat V - ♥ rem V - ♥) 80 	Q - X Cpen A 120 16 NT, PERCE W 30 4	60 NT /I 0	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_		GROUND SURFACE		76.84										
-		SAND, trace to some silt, trace gravel, loose, brown, wet	uuuuu	76.23 0.61	1	ss	4					650	5	∇
- 1 -	s	CLAY, silty, trace sand, stiff, brown, moist		75.47	2	ss	9			0				<u> </u>
-2	id Stem Auger	CLAY, silty, trace sand, stiff, brown, moist		75.01 1.83	3	ss	13			0	0			
	Sol	SAND, trace gravel, trace silt, compact, brown, moist		74.55	4	ss	11			0				
- 3 - 4 - 4 - 5 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		END OF BOREHOLE AT 2.90m. BOREHOLE WATER LEVEL AT 0.91m UPON COMPLETION. BOREHOLE BACKFILED WITH BENTONITE TO GROUND SURFACE.		2.90										
-		GROUNDWATER ELE ♀ WATER LEVEL UPON CO	EVA ⁻				 w/	ATER LEVEL IN WELL/PIEZO			GED :	RB JDA/MT	В	THURBEI

			REC	COI	RD	C	F BOREHOLE E	H-10		
PF LC	ROJE DCAT	CT : Napanee Water Pollutio	n Contro anee, Ol	l Plan N	it Exp	pan	sion		Project N	lo. 30726
ST CC	art Mpi	ED : February 25, 2021 LETED : February 25, 2021			I	N 4	900 286.0 E 343 480.9		Sheet [,] Datum	I OF 1 Geodetic
щ	ДŎ	SOIL PROFILE		S	AMPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - Q - X	Ц С г	
DEPTH SCA (metres)	BORING METH	DESCRIPTION	STRATA PLOT) DI) DI DI DI) DI DI) DI) DI DI DI DI DI DI DI DI DI DI	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 160 40 80 120 160 1 1 1 1 WATER CONTENT, PERCENT wp — 0 10 10 20 30 40 10 20 30 40 10	ADDITIONA LAB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
-		GROUND SURFACE CLAY, silty, some gravel, some sand, some organics, stiff, brown, moist: (FILL)	76	. <u>.53</u> .00 1	ss	14		0		
- 1		SAND, silty, trace clay, trace gravel, loose, brown, moist	C	.69 2	SS	4		o		
- - -2	olid Stem Augers	CLAY, silty, trace to some sand, stiff, brown, moist; with sand layers up to 100mm thick	1	.083	SS	13			ł	
- 3	0,	becoming grey		4	ss	10		0		
			72	.87	SS	9	Grain Size Analysis: Gr 0%/ Sa 15%/ Si 24%/ Cl 61%			
-4 -4 -		BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH HOLEPLUG.								-
- 3 - - - - 6 -										-
- 7 - 7 -							2			
-8 -8										
- 9										
! 		GROUNDWATER ELE	L L VATIOI	۱ VS						
			MPLETI	N	<u> </u>	<u> </u>	ATER LEVEL IN WELL/PIEZO	DMETER LOGGED : RB CHECKED : JDA	/МТВ	THURBER

			F	REC	OF	RD) C	F BOREHOLE B	H-11				
PF		CT : Napanee Water Pollutio	n Co	ontrol P	lant	Exp	pan	sion		Ρ	roject I	No. 30726	
S	FART	ED : February 25, 2021	anc	e, ON						S	HEET	1 OF 1	
C		ETED : February 25, 2021				1	N 4	900 293.0 E 343 503.0	SHEAR STRENGTH: Curk	D	ATUM I	Geodetic	
)) ()		SOIL PROFILE	F		SA	.MPL	ES E	COMMENTS	nat V - ● Q - 1 rem V - ● Cpen		ING	PIEZOMETER	ł
TH SC metres	IG ME	DESCRIPTION	A PLC	ELEV.	IBER	۲.	S/0.3r	DYNAMIC CONE PENETRATION RESISTANCE PLOT	WATER CONTENT, PERC	ENT	DITION TEST	OR STANDPIPE	
DEP	BORIN		STRAT	DEPTH (m)	NUN		BLOW	20 40 60 80 100	wp	wl 40	ADI	INSTALLATION	N
		GROUND SURFACE	xxxx	76.39									
ŀ		some organics, very stiff to firm, brown, moist		0.00	1	ss	31						
		Note:SS1 was frozen: (FILL)										Bontonito	
												Dentonite	
- 1 -		SAND, some silt, trace clay, very loose to	***	75.33 1.07	2	ss	6						
	gers	loose, brown, moist										Filter Sand	
i.	em Au				3	99	3	Grain Size Analysis: Gr 0%/ Sa 81%/ Si 13%/ CL 6%					
-2	low St											I I I I I I I I I I I I I I I I I I I	-
	오											Slotted	
ŀ		CLAY, silty, trace sand, firm, brown, moist	W	73.80 2.59	4	ss	6						
- 3											2		
					5		5						
				72.73	5	33	5						
•		END OF BOREHOLE AT 3.66m.		3.66									
-4		50mm diameter Schedule 40 PVC pipe with a 1.54m slotted screen.											-
ŀ		DATE DEPTH(m) ELEV.(m) Feb 26/21 2.20 74.19											
Ì		Mar 03/21 2.09 74.30 Apr 14/21 2.10 74.29											
- 5									₽ ~				
ļ.													
ŀ													
-6													-
ŀ													
Ì					$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ $								
ŀ													
7							\geq	2					
ŀ													
ļ.						1							
-8													-
				ľ									
- 9													
ŀ													
ļ.													
ŀ													
		GROUNDWATER ELE	VA	TIONS	S		_						
		$\stackrel{\bigvee}{=}$ water level upon Co	MPL	ETION	I	7	۷ ک ۱	ATER LEVEL IN WELL/PIEZO	METER LOGGED :	RB	_		
							A	pm 14, 2021	CHECKED :	JDA/MT	В	THURB	ER

			F	REC	OF	RD	C	F BOREHOLE B	SH-13				
PF		CT : Napanee Water Pollutio	on Co	ontrol P e ON	lant	Exp	pan	sion			I	Project N	lo. 30726
ST	ARTI	ED : March 2, 2021	June	0, 0 11							:	SHEET '	1 OF 1
CO	OMPL	ETED : March 2, 2021			_	1	N 4	900 388.5 E 343 400.4	SHEAR)u KPa		Geodetic
CALE s)	ЕТНОВ	SOIL PROFILE	5		SA	MPL	ES E	COMMENTS	nat V rem V	- Cp 80 120	Q - X ben A 160	NAL TING	PIEZOMETER
PTH Si (metre	NG M	DESCRIPTION	TA PL	ELEV.	MBER	ΥPE	NS/0.3		U WATER C	ONTENT, PE	RCENT	DDITIO 3. TES	OR STANDPIPE
DEI	BORI		STRA	(m)	R	-	BLO	20 40 60 80 100	wp I	20 30		AL	INGTALLATION
-		GROUND SURFACE		81.75 0.00									
ł		dense, brown, frozen: (FILL)			1	ss	59		0				
		CLAV silty trace sand trace gravel trace		81.14									
ŀ		oxidation/rust, stiff, brown, moist: (FILL)		0.01							A		
- 1					2	SS	8		0				
-	lers	CLAY, silty, trace sand, trace oxidation,		80.30 1.45									
İ.	m Aug	stiff, brown, moist			3	SS	10				>		
-2	lid Ste										Γ		
ļ .	Ñ												
ŀ					4	ss	15			o▲			
- 3												2	
					5		0						
[78.09			5						
ŀ		END OF BOREHOLE AT 3.66m. BOREHOLE OPEN AND DRY UPON		3.66									
-4		BOREHOLE BACKFILLED WITH BENTONITE.											•
ŀ										, 			
- 5													
-													
-6					\mathbb{R}								
		/											
ŀ					/_								
-													
- 7								2					
-						1							
-8													
ŀ				/									
[/										
ŀ													
F													
ŀ													
[
<u> </u>		GROUNDWATER ELE	VA	L TIONS	∟}}	<u> </u>							
		$\overline{ au}$ water level upon CC	OMPL	ETION	I	7	y	ATER LEVEL IN WELL/PIEZO	METER	LOGGED	: RB		
										CHECKED	: JDA/M	TB	THURBER
-													

			R	RECO	OF	RD	С	F BOREHOLE B	H-14			
PF		ECT : Napanee Water Pollut	ion Co	ontrol P	lant	Exp	ban	sion			Project	No. 30726
ST	TAR DMF	TION : 300 Water St West Na TED : March 1, 2021 PLETED : March 1, 2021	apanee	e, On		1	۷4	900 385.9 E 343 445.9			SHEET DATUN	1 OF 1 Geodetic
ш	6	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STREI nat V -	NGTH: Cu, KPa Q - 🗙	. (7	
DEPTH SCAL (metres)	RORING METH		STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V - • 40 80 40 80 80 80 80 80 80 80 80 80 80 80 80 80 8	Cpen ▲ 120 160 I I I ENT, PERCENT → W I 30 40 I I	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_		GROUND SURFACE		80.37								
-		SAND, gravelly, trace silt, compact to loose, brown, moist (FILL)		0.06	1	ss	30		0			
- 1 - 1				78.92	2	ss	4		0			
-2	Solid Stem Augers	CLAY, silty, sandy, trace gravel, firm to hard, brown, moist		1.45	3	ss	4	Grain Size Analysis: Gr 2%/ Sa 25%/ Si 48%/ Cl 25%		0		
					4	ss	32			o		
				76.71	5	ss	22					
- -4 - - - - - 5		BORCHOLE BACKFILLED WITH HOLEPLUG.		5.60								
- - - - - 6 -												
- 7												
8												
- 9												
<u>i</u>					Ļ							
		∇ water level upon c	OMPL	ETION		<u> </u>	- v	/ATER LEVEL IN WELL/PIEZO	METER LOC CHE	GGED : RB	A/MTB	THURBER

RECORD OF BOREHOLE BH-20 PROJECT Napanee Water Pollution Control Plant Expansion Project No. 30726																
PR	ROJ		Sapanee Water Pollutio 300 Water St West Nan	n Co	ontrol P	lant	Ex	pan	sion					F	Project N	lo. 30726
ST	AR	TEC	D : February 26, 2021	anc	e, on									S	HEET ?	1 OF 1
cc	OMF	PLE.	TED : February 26, 2021				l	N 4	900 375.0 E 343 378.0			TDENOT		C	ATUM	Geodetic
ALE			SOIL PROFILE			SA	MPL	ES	COMMENTS	-	nat V - rem V -	•	Q - Cpen	Pa	NG	
DEPTH SC (metres			DESCRIPTION	STRATA PLO	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	v v	40 3 /ATER C wp	80 1 	20 10	60 I ENT wl 40	ADDITION LAB. TEST	OR STANDPIPE INSTALLATION
-			GROUND SURFACE		79.99											
-			CLAY, sitty, trace sand, trace gravel, firm, brown, wet: (FILL)		79.30	1	ss	6				0		•		
- - 1 -			CLAY, silty, trace sand, very stiff, brown, moist		0.69	2	ss	19					0	•		
	ugers															
- -2	Solid Stem A					3	ss	17				o				
-					77.09	4	SS	18	Grain Size Analysis: Gr 0%/ Sa 8%/ Si 44%/ Cl 48%		0				~	
- 3			END OF BOREHOLE AT 2.90m. BOREHOLE OPEN TO 2.9m AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE.		2.90											
4																
											M					
- 5										>						
- -6																
-						\langle										
- 7									2							
-8						~										
				//												
- 9																
107100																
	L		GROUNDWATER ELE	VA ⁻	TIONS	ـــــ ک	<u> </u>	<u> </u>	1	1	<u> </u>	1	1	<u> </u>		
			abla water level upon CO	MPL	ETION		7	L v	VATER LEVEL IN WELL/PIEZO	DMETE	R	LOGGE CHECK	D : ED :	RB JDA/MT	В	THURBER

PF		ECT Napanee Water Pollu	REC	OF		OF BOREHOLE BH-21		Draigat	la 30726
LC		TION : 300 Water St West N	apanee, ON	IGIN	. – ۸			Projectiv	10. 30720
ST CC	ART	TED : March 2, 2021			Ν	4 900 395 1 E 343 423 1		SHEET 1	1 OF 1 Geodetic
		SOIL PROFILE		SA	MPLI	S COMMENTS SHEAR STRENG	GTH: Cu, KPa		000000
DEPTH SCALE (metres)	BORING METHC	DESCRIPTION	STRATA PLOT (m) (m)	NUMBER	түре	Interview <	Cpen A 120 160 JT, PERCENT V I wl 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- - -		GROUND SURFACE ASPHALT (62.5mm) GRAVEL, sandy: (FILL) SILT, sandy, some clay, trace gravel, compact, brown, moist: (FILL) CLAY, silty, trace sand, stiff to very stiff, brown, moist	80.5 0.0 0.1 0.3	1 5 7 7 7	SS	21 C			
- 1 - -	ers			2	SS		0		
- -2	Solid Stem Aug			3	SS				
		END OF BOREHOLE AT 2.90m.	77.6	4	SS	18	0	2	
		BOREHOLE BACKFILLED WITH BENTONITE TO 0.2m AND THEN ASPHALT PATCH TO SURFACE.							
-4 - -									
- 5 -									
-6 -									
- - - 7 -									
-8				<					
- - - 9									
- - -									
		GROUNDWATER EL	EVATION COMPLETION	S N	Ţ	WATER LEVEL IN WELL/PIEZOMETER LOGO	ED : RB KED : JDA/I	МТВ	THURBE

			F	RECO	OF	RD	0	OF BOREHOLE B	H-22		
PF	roje Dcat	ECT : Napanee Water Pollut	ion Co apane	ontrol P e ON	lant	Exp	pan	sion		Project	No. 30726
ST	ART	TED : March 2, 2021	apano	0, 011						SHEET	1 OF 1
CC	DMP	PLETED : March 2, 2021			_	1	N 4	900 334.8 E 343 465.3	SHEAR STRENGTH: CU KPa	DATUM	Geodetic
ALE		SOIL PROFILE	_⊢	1	SA	.MPL	ES	COMMENTS	nat V - ♥ Q - X rem V - ♥ Cpen ▲	RG P	PIEZOMETER
DEPTH SC (metres	BORING ME		STRATA PLO	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 160 ↓ ↓ ↓ ↓ WATER CONTENT, PERCENT wp ↓ 0 ^W ↓ wl 10 20 30 40	ADDITION LAB. TEST	OR STANDPIPE INSTALLATION
_		GROUND SURFACE		77.72							
- - -		SILT, sandy, some clay, trace gravel, compact, brown, moist: (FILL)		0.00 77.03 0.69	1	ss	14				Σ
- 1 -	ers	organics, firm, brówn, moist: (FILL)		76.27	2	ss	6	Grain Size Analysis: Gr 3%/ Sa 22%/ Si 49%/ Cl 26%	0		
-2	Solid Stem Auge	PEAT, SON, DIACK, Wet		1.45	3	ss	3			317Φ	
		CLAY, silty, some organics, very soft, grey, wet		75.38 2.34	4	ss	2			910	
- - -		END OF BOREHOLE AT 3.66m	DREHOLE AT 3.66m. E OPEN AND WATER LEVEL JPON COMPLETION. F BACKEUL FD WITH	74.06	1	ST		Grain Size Analysis: Gr 0%/ Sa 5%/ Si 47%/ Cl 48%			
-4 - - -		BOREHOLE OPEN AND WATER LEVEL AT 0.66m UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE TO SURFACE.									
- 5 - - - - - - - - -											
- - 7 - -								2			
8											
- - 9 -											
í -		GROUNDWATER FU	=\/A [.]		Ļ			l			
				LETION		<u> </u>	<u>v</u>	VATER LEVEL IN WELL/PIEZC	METER LOGGED : RB CHECKED : JDA	/MTB	THURBER

				R	RECO	OF	RD	C	F BOREHOLE E	3H-2	3					
PF			: Napanee Water Pollutio	n Co anee	ontrol P	lant	Exp	pan	sion					P	roject N	lo. 30726
ST	TAR [®]	TED	: February 26, 2021	ance	5, ON									S	HEET 1	I OF 1
CC	OMF	LETE	D : February 26, 2021			_	1	N 4	900 302.4 E 343 359.7			DENCT		De	ATUM	Geodetic
U ∎	L C H		SOIL PROFILE			SA	MPL	ES	COMMENTS	- ^s	nat V - rem V -	RENG⊺ ●	H: Cu, K Q - Cpen	Pa	RG AL	DIEZOMETER
DEPTH SC, (metres)	RORING MET		DESCRIPTION	STRATA PLO	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT		10 8 │ ATER CC /p	0 1 DNTENT 0 3	20 1 	60 ENT wl 40 	ADDITION LAB. TEST	OR STANDPIPE INSTALLATION
		G S	ROUND SURFACE ILT, clayey, some sand, trace to some		77.55 0.00											
- - -		gr	ravel, firm, black/brown/red, moist: (FILL)		0.00	1	ss	19			0					
- 1 -	S				76.10	2	SS	8			с					
	tem Auger	br	LAY, silty, trace sand, stiff to very stiff, rown, moist		1.45	3	ss	9								
-2	Solid S															
ļ					74 65	4	SS	19								
- 3		E B C B B	ND OF BOREHOLE AT 2.90m. OREHOLE OPEN AND DRY UPON OMPLETION. OREHOLE BACKFILLED WITH ENTONITE.		2.90										Þ	
- - -4																
- 5										2						
- - -6																
						\langle										
- 7									2							
- - -8																
- 9																
2				VAT	FIONS	3	_	_								
			¥ WATER LEVEL UPON CO	MPL	ETION	I	<u> </u>	<u> </u>	ATER LEVEL IN WELL/PIEZ	OMETE	R	LOGGE CHECK	D : ED :	rb Jda/Mt	В	THURBER

PROJECT Napanee Water Pollution Control Plant Expansion Project No. 30726 LOCATION 300 Water St West Napanee, ON Project No. 30726																
PI	RO DC		T : Napanee Water Pollution	on Co bane	ontrol P e ON	lant	Ex	pan	sion					F	Project N	lo. 30726
S ⁻ C	TAI ON	rte 1PLE	D : February 25, 2021 ETED : February 25, 2021		-,		I	N 4	900 283.0 E 343 428.0					S	HEET ? ATUM	1 OF 1 Geodetic
щ		Ð	SOIL PROFILE			SA	MPL	ES	COMMENTS	5	HEAR S		FH: Cu, K Q - X	Pa K	ں _	
DEPTH SCAL (metres)		BORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	 	rem V - 40 ⊥ /ATER C vp I−−−− 10 ⊥	80 1 ONTENT 00 3	Cpen 2 120 1 1 7, PERCE 	60 I ENT wl 40	ADDITIONAI LAB. TESTIN	PIEZOMETER OR STANDPIPE INSTALLATION
-		_	GROUND SURFACE	~~~	75.94											
	2	0	moist		75.26	1	ss	4				0				
- 1	id Stem Aude		CLAY, silty, trace sand, very stiff to stiff, brown, moist		0.69	2	ss	16						0		
	°.	2				3	SS	13	Grain Size Analysis: Gr 0%/ Sa 6%/ Si 68%/ Cl 26%			0		>>		
-2						_					K			58		
ł					73.05	4	SS	21				\mathbb{N}			Ť.	
- 3			END OF BOREHOLE AT 2.90m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE.		2.90										2	
- -4 -																
- 5																
-6																
- 7 - 7									2							
8						4										
15/21 - · · ·																
EL-30726.GPJ 7/																
THURBERZS I			GROUNDWATER ELE ⊈ WATER LEVEL UPON CC	VA ⁻ MPL		5 I	1	L v	ATER LEVEL IN WELL/PIEZO	METE	R	LOGGE CHECK	D : ED :	RB JDA/MT	В	THURBER

Selected Boreholes from Previous Investigation

REFER	ENCE No	o.:	11140477-A1							ENC	LOSU	DSURE No.: 1 BOREHOLE LOGG Page: 1 Diamon Sector 1 LEGEND 3 Split Spoon 3 Auger Sample 3 Shelby Tube Water Level Water content (%) 4 Atterberg limits (%) Penetration Index based on Split Spoon sample Penetration Index based on Dynamic Cone sample 1 Shear Strength based on Field Vane 3 Shear Strength based on Lab Vane Sensitivity Value of Soil 1								
				BOREHOLE No.:	BH1-	-17		-			BC	RE	HC)LE	E L(C				
		G		ELEVATION:	78.09	9 m					Pa	ge:	1	0	of _	1				
		wp of	Greater Nananao C/o EV	/R Engineering Inc								L	.EG	ENC	<u>)</u>					
PRC	_INT. <u>10</u>).IFCT·	Geote	chnical Investigation for	Ingrades to Napanee Waster	water Tr	eatmen	t Plant				SS Sp	lit Spo	on							
LOC		300 \	Vater Street West. Napa	nee. On	nator m	Jaimon	<u>i i idiit</u>				ST Sh	ger Sa elby T	ampie ube							
DES	CRIBED	BY:	S.Wheeler	CHECKED BY:		S. D	unstan			Ţ	Wa	ater Le	evel							
DAT	E (STAR	T):	15 May 2017	DATE (FINISH):		15 N	lay 201	7		° ⊢	Wa • Att	ater co erberg	ntent g limit	(%) s (%)	,					
SC	ALE		STF	ATIGRAPHY		S	AMPLE	DATA		•	N Pe Sp N Pe	netrati lit Spo netrati	ion In Ion sa Ind	dex ba ample lex ba	ased	on n				
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	SCRIPTION OF AND BEDROCK	Ctoto	Type and Number	Recovery	OVC	Penetration Index / ROD	∆ □ S	Dy Cu Sh Cu Sh Se Sh Po	namic ear St ear St nsitivi ear St cket P	Cone rengt rengt ty Val rengt Penetr	samp h base h base ue of h base romete	ed on ed on Soil ed on ed on	Field Lab	d Vane Vane			
meters	78.09		GR	OUND SURFACE			%	ppm	Ν	10	SCA 50kPa	ALE FO 100 30 4	OR TE kPa	EST F 150k		LTS 200kl 80	Pa 90			
-	78.0 77.9		TOPSOIL- Brown, dam	p. (Approximately 75 mm)	A	(SS1	11/24		12			-		_	4					
- 1.0			FILL- Gravel, some slit FILL- Sandy silt, loose, *Becoming moist.	brown, damp.		ssz	2 11/24		2	•					_					
F ool	76.4		BURIED TOPSOIL- Bro	wn, moist.		ssa	3 20/24	1	2	•		-		_	_					
- 2.0	70.5		SILTY CLAY- Stiff, grey	, moist.	r	FV1					S=3			_	=					
= 3.0			Becoming wet.												_					
						SS4	24/24		4	•		$\phi +$			-					
4.0			*Becoming very stiff.			SS	5 24/24	1	4	•					_	_				
5.0						ST														
6.0			*Becoming stiff.			sse	5 24/24	1	4	•					_					
-					Ĺ	ss7	' 24/24	1	3	•	-	-0			_					
- 7.0			*FV > 90 kPa vane cap	acity.		FV2	2													
8.0	70.3		SILTY CLAYEY SAND-	Loose, brown, wet.		ssa	3 24/24	1	9	•				_	_	_				
					Ē		12/18	8	B			-		_	_					
- 9.0	69.3	<u>9898989</u>	Auger refusa	l at approximately 8.8 m.	{			[_					
															_					
<u>-</u> 10.0												-								
				•								-		_	_					
% ⊢ 11.0												-		_	_					
														_	_					
															_					
≧ ≅ 13.0																				
14.0															_					
												-		=	=					
2 15.0												-		=	\pm					
															_					
≩ <u> </u> 16.0														\neg	-	_				
												-		=	\mp					
NOTES):		alada a seconda da seconda da se		1	1	1	1	I		I	1					I			
Boreh	een odou Iole locati	ir or st on and	aining noted in borehole d elevation surveyed by H	lopkins-Chitty Surveying Ltd.																
Pocke	et penetro	meter	readings are for internal	GHD use only and should no	t be relie	d upon	by othe	ers.												

REFER	ENCE No	o.:	11140477-A2	_						ENCL	OSUF	RE N	0.:		1;	3	
				BOREHOLE No.:	BH13	-17		-			BO	RE	HC)LE	LO	G	
		G		ELEVATION:	81.07	m		-			Pa	ge:	1	0	f _1	_	
CLIF	=NT· To	wn of	Greater Napanee C/o E	/B Engineering Inc								Ľ	EG	END)		
PRC	JECT:	Geote	chnical Investigation for	Upgrades to Napanee Waster	water Tre	eatmei	nt Plant			S	S Spl	it Spo	on				
LOC	ATION:	300 \	Nater Street West. Napa	nee. On							5 Aug T She	elby T	ube	1			
DES	CRIBED	BY:	S. Wheeler	CHECKED BY:		S.	Dunstan			Ţ	Wa	ter Le	vel				
DAT	E (STAR	T):	23 November 20	17 DATE (FINISH):	2	23 Nov	vember 2	2017		°	Wa Atte	ter cor erbero	ntent (1 limit	(%) s (%)			
sc	ALE		STE	RATIGRAPHY			SAMPLE	DATA		• N	Per Spl	netrati it Spo	on Ind	dex ba ample	ased o	۱	
	_	کر ا					-		- O	• N	Per Dyr	netratio namic	on Ind Cone	iex bas sampl	sed on le		
Depth BGS	Elevatior (m)	Stratigraph	DES SOIL	SCRIPTION OF AND BEDROCK	State	Type and	Recovery	OVC	Penetration Index / RQI	△ C □ C S ▲	u She u She Ser She Poo	ear Str ear Str nsitivit ear Str cket P	rengti rengti iy Val rengti 'enetr	h base h base ue of h base romete	∍d on F ∍d on L Soil ∍d on ∋r	ield V ab Va	lane ane
meters	81.07		GR	OUND SURFACE			%	ppm	Ν	10	SCA	LE FC 100	DR TE	EST R 150kl	ESUL [*] Pa 2	rS ^{00kPa}	90
_		\bigotimes	FILL- Sandy Silt some	Gravel, loose, grey, damp.		ss	1 7/24		8	•							
	80.1															-	
	80.1	\bigotimes	FILL- Silt some Sand a	oproximately 50 mm thick) nd Gravel compact grev dar	Cravel compact grey damp												
- 2.0	79.0		*Becoming Sandy Silt t	race Gravel, loose, brown, da	imp	ss	3 15/2	4	6	•					_		
	70.9		CLAY AND SILT- Very	stiff, brownish grey, damp.	ss	4 24/2		7	•								
- 3.0					F	7	. [
-						SS	5 24/2	4	9	•					_		
4.0			*Becoming grey	SS6 24/24 7					7	•							
5.0			*Deceming byour			ss	7 24/2	4	6	•				-			
E 60	75.0		Becoming brown			SS	8 24/2	4	6	•							
- 0.0	75.0		SAND- Compact, light	prown, wet.		ss	9 24/2	4	10	•						-	
- 7.0	74.2		*Becoming Silty Sand	strong, thickly bedded											_		
			horizontal, slightly wea	thered, excellent quality based	d on	BC	1 63/6	2	97								
- 8.0			RQD.				1 03/0		57				\vdash		_	+	
E					H	-											
- 9.0						BC	2 60/6	1	03						_		
							2 00/0		55								
- 10.0	71.1		End of borehole at an	proximately 10.0 m in limesto	one.	-										-	
													\square				
													\vdash			_	
12.0																-	
															_		
5 – 13.0											_					+	
																_	
å⊢14.0																	
a⊢15.0 vL											_				_		
≩ <u> </u> 16.0										\vdash	_		\vdash	$ \rightarrow$	_	+	
	•-																
*No sh	een odou	ir or st	aining noted in borehole														
E *Boreh	ole locati et penetro	on and meter	d elevation surveyed by (readings are for internal	GHD field staff GHD use only and should not	t be relie	d upoi	h by othe	ers.									
			J	,		1											

REFER	RENCE No	o.:	11140477-A2	ENCLOSURE No.: 14												
				BOREHOLE No.:	BH14	-17				E	BOR	EHO	OLE	E L(C	
		g		ELEVATION:	81.09	m					Page:	_1	_ (of _	1	
СШ	ENT: To	wn of	Greater Napanee C/o EV	/B Engineering Inc								LEG	EN	<u>D</u>		
PRC	DJECT:	Geote	chnical Investigation for	Jpgrades to Napanee Wastey	water Tre	atment	Plant			SS I	Split Sp	boon	•			
LOC	CATION:	300 \	Nater Street West, Napa	nee, On						ST	Shelby	Tube	e			
DES	SCRIBED	BY:	S. Wheeler	CHECKED BY:		S. Di	unstan			Ţ	Water I	_evel				
DAT	E (STAR	T):	23 November 20	DATE (FINISH):	2	23 Nove	mber 2	017		° H	Water of Atterbe	ontent rg limi	(%) its (%)		
SC	ALE		STF	ATIGRAPHY		S	AMPLE I	DATA		• N • N	Penetra Split Sp Penetra	ation II boon s tion In	ndex b ample dex ba	based e ased or	on ก	
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	OVC	Penetration Index / RQD	△ Cu □ Cu S	Dynami Shear S Shear S Sensitiv Shear S Pocket	c Cone Streng Streng vity Va Streng Penel	e sam th bas th bas alue of th bas trome	ole sed on sed on f Soil sed on ter	Field Lab \	Vane /ane
meters	81.09		GR	OUND SURFACE			%	ppm	Ν	50k 10 2	SCALE I Pa 10	OR T	EST 150 50 6	RESUI ^{IKPa}	LTS 200kP 80	a 90
_	90 E		FILL- Sandy Silt some	Gravel, compact, light brown,		SS1	20/24		16	•		-		\vdash	+	
E 1.0	80.5		BURIED TOPSOIL- (Ap	pproximately 50 mm thick)		552	14/14		B			_		-	_	
		\bigotimes	FILL- Silty Gravel some	Sand, dense, dark grey, dar	וף. 🏹							+			\mp	_
2.0	79.0	\bigotimes	limited recovery	race Gravel, concrete piece	X	SS3	6/11		R						+	
			CLAY AND SILT- Very	stiff, brownish grey, damp.		SS4	24/24		12	•					+	
- 3.0						SS5	24/24		9	•					_	
- 4.0						SS6	22/24		17	•					+	<u> </u>
_ 5.0						SS7	5/24		8	•					+	+
E 60	75.4		SAND- Compact, brow	n, wet.		SS8	18/24		20						\mp	<u> </u>
	74 3		*Becoming some grave limestone chips in tip o	l, very dense, light brown, we f split spoon.	t,	ss9	14/15	5	R						\mp	
- 7.0	74.5		Auger refusa	at approximately 6.8 m.											+	<u> </u>
8.0															_	
9.0															_	
															+	
															\pm	
															_	
												+		\vdash	+	
≌⊨ ⊳⊢12.0												_		\square	+	
												-		\square	\mp	_
i - 13.0														\square	+	
												1			+	
§ −14.0															+	_
															_	
a⊢15.0 ≱⊢															\mp	-
															\mp	+
															\mp	+
NOTES	S:															
*No sh *Boreh	ieen odou iole locati	ir or st on and	aining noted in borehole d elevation surveyed by 0	GHD field staff												
*Pocke	et penetro	meter	readings are for internal	GHD use only and should not	t be relie	d upon l	by othe	rs.								

REFER	RENCE No	o.:	11140477-A2									ENCLOSURE No.: 15							
				BORE	EHOLE No.:	MW1	<u>5-1</u>	7-d					BOI	REŀ	10	LE	LOC	ì	
		G		ELEV	ATION:	78.	77	m				-	Pag	e: _	1	of	_1		
	ENT: To	wn of	Greater Napapee C/o EV	/B Enginee	ring Inc									LE	EGE	ND			
PRC	DJECT:	Geote	chnical Investigation for	Upgrades to	o Napanee Wa	stewater .	Trea	atment I	Plant			SS SS	Split	Spoo	n				
LOC	CATION:	300 \	Nater Street West, Napa	nee, On					iant			ST ST	Shel	by Tul	npie be				
DES	SCRIBED	BY:	S. Wheeler		CHECKED B	Y:		S. Du	nstan			Ţ	Wate	er Lev	el				
DAT	E (STAR	T):	23 November 20	17	DATE (FINIS	H):	23	3 Nover	nber 2	017		°	Wate Atter	er conte berg l	ent (% imits	。) (%)			
SC	ALE		STRATIGRAPHY		MONITO	OR -		SA	MPLE D	DATA		• N • N	Pene Split Pene	etration Spoo etration	n Inde n san 1 Inde:	ex bas ple x base	sed on ed on		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDR	OF OCK	0.70 <i>—</i> 0.62 <i>—</i>		State	Type and Number	Recovery	OVC	Penetration Index / RQD	△ Cu □ Cu S	Dyna Shea Shea Sens Shea Pock	ar Stre ar Stre ar Stre sitivity ar Stre ar Pe	one si ength ength Value ength netroi	ample based based e of S based meter	d on Fie d on Lat oil d on	ld Va Van	ine ie
meters	78.77		GROUND SURF	ACE					%	ppm	Ν	50 10 2	SCAL kPa 20 30	E FOF 100kF 0 40	R TES	5T RE 150kPr 60	SULTS a 200 70 8	kPa 0 9	10
_	78.7		TOPSOIL- (Approxima	tely 50	WL 0.37-	Ţ	М	SS1	18/24		7					1	+		
- 1.0	77.7 77.7		FILL- Sandy Silt some	Gravel, ip.	0.46 -			SS2	22/24	•	5	•				<u> </u>			
2.0			BURIED TOPSOIL- Or dark brown to black. CLAY AND SILT- Verv	ganic, stiff.				SS3	24/24		15	•						-	
			brown, damp.	,			X	SS4	24/24		12	•				—			
					Bentonite		М	SS5	24/24		7	•		_		+	_	-	-
4.0	74.0							SS6	24/24		17	•				_		A	
5.0	74.2		SILTY CLAY- Very stift damp.	, grey,	7			SS7	24/24		7	•				_	_		
6.0					5.79- Riser- 6.25-		X	SS8	24/24		11	•				_			
7.0	72.1		SAND- Compact, brow	n, wet,	Screen-			SS9	24/24		12	•				+			
	71.0		125 mm thick).	vimately	Sand ~ 7.77 -			SS11	5/5		R					+			
- 8.0 -			Auger refusal at appro 7.8 m.	oximately												_			
9.0																_	_		
																_			
																_			
																_			
																—			
13.0																_			
																+			
6 - 14.0																+			
																+			
																\pm	\pm		
≩ <u> </u> 16.0																_			
	 }·																		
*No sh	ieen odou	ir or st	aining noted in borehole	SHD field of	aff														
*Pocke	et penetro	meter	readings are for internal	GHD use o	only and should	not be re	lied	upon b	y othe	rs.									
BOREHOLE No.: MW15-17-s BOR ELEVATION: 78.79 m Page:		E LOG																	
--	---	--																	
ELEVATION: 78.79 m Page:	1																		
		of <u>1</u>																	
CLIENT: Town of Greater Nananee C/o EVB Engineering Inc	LEGEN	ID																	
PBO JECT: Geotechnical Investigation for Linguides to Nananee Wastewater Treatment Plant	poon																		
LOCATION: 300 Water Street West Nananee. On	Sample Tube																		
DESCRIBED BY: S Wheeler CHECKED BY: S Dunstan	Level																		
DATE (START): 23 November 2017 DATE (FINISH): 23 November 2017	content (%)	%)																	
Scale Stratic Papily MONITOR Sample Pata	ation Index	based on																	
SURALE STRATIGRAPHY WELL SAMPLE DATA • N Penetra • N •	ation Index I	based on																	
Depth Logistical and the second sec	Strength ba Strength ba vity Value Strength ba Penetrom	ased on Field Vane ased on Lab Vane of Soil ased on eter																	
meters 78.79 GROUND SURFACE % ppm N SokPa 1	FOR TEST 00kPa 15 40 50	RESULTS 50kPa 200kPa 60 70 80 90																	
78.7 TOPSOIL- (Approximately 50																			
Inferred fill based on WL 0.617																			
MW15-17-d																			
E 2.0 MW15-17-d																			
4.0 Screen																			
E 74.2 Find of borehole at 4.57																			
5.0 approximately 4.6 m.																			
9.0																			
	+ +																		
*No sheen odour or staining noted in borehole *Borehole location and elevation surveyed by GHD field staff																			
*Pocket penetrometer readings are for internal GHD use only and should not be relied upon by others.																			

REFERENCE	No.:	11140477-A2	_						ENCLO	SURE	No.:			17	
			BOREHOLE No.:	BH16	·17					BOR	EHC	DLE	E L(C	
	G		ELEVATION:	78.43	m					Page:	1	_ (of	1	
	Town of	Graatar Napapao C/o EV									LEG	END)		
	Geote	choical Investigation for	/ B Engineening inc.	water Tre	atmont	Plant			🖂 ss	Split Sp	boon				
	. <u>00010</u>	Water Street West Nana	nee On	water ne	atment	i iain			GS Cart	Auger :	Sample	Э			
DESCRIB	FD BY	S Wheeler	CHECKED BY		S Di	Instan			v Z	Water	Level				
DATE (ST	ART):	23 November 20	17 DATE (FINISH):	2	3 Nove	mber 2	017		°	Water of Atterbe	ontent	(%) ts (%)	١		
SCALE	/	STE			SA		ΔΤΔ		• N	Penetra Split Sp	ation Ir	ndex b ample	ased	on	
	2				0,			- 0	• N	Penetra Dynami	tion In c Cone	dex ba samp	ised or ole	n	
Depth BGS	Stratigraph	DES SOIL	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	OVC	Penetration Index / RQI	△ Cu □ Cu S	Shear Shear Sensiti Shear Pocket	Streng Streng vity Va Streng Penet	th bas th bas lue of th bas romet	ed on ed on Soil sed on ter	Field Lab	Vane Vane
meters 78.4	.3	GR	OUND SURFACE			%	ppm	Ν	50	SCALE	FOR T	EST	RESU	LTS 200kF	a on
78.	4	TOPSOIL- (Approxima	tely 50 mm thick)		SS1	18/24		7			40 0				
E 1.0 77.	s 💥	FILL- Sandy Silt some damp.	Gravel, loose, dark brown,		552	21/21		8							
		CLAY AND SILT- Very	stiff, brown, damp.	Ê	002	24/24		0							
2.0				ľ	SS3	24/24		12	•				_		
				X	SS4	24/24		16	•						A
					SS5	24/24		16	•						•
4.0 74.	5	SILTY CLAY- Very stift	f, grey, damp, trace sand vein	is.	SS6	24/24		18	•) 				_	
5.0		*Becoming stiff			SS7	24/24		7	•						
					SS8	24/24		5	•						
	3 - 21 21 2	SAND- Compact, brow (approximately 125 to 1	n, wet, some silt seams 150 mm thick).		SS9	24/24		8	•						
7.0					SS10	24/24		12	•				<u> </u>		
8.0					SS11	24/24		R							
70.	1	Auger refusa	l at approximately 8.4 m.												
€ 9.0															
10.0															
12.0															
													_		
a⊢ 13.0															_
14.0													_		
											-		=		
⊑15.0											-		=		
≨ <u> </u>											-		-+		_
*No sheen o *Borehole lo *Pocket pen	dour or st cation and etrometer	aining noted in borehole d elevation surveyed by C readings are for internal	GHD field staff GHD use only and should no	t be relied	d upon b	by othe	rs.								

REFER	ENCE N	o.:	11140477-A2	_								ENCI	OS	URE	No.:			18		
				BOR	EHOLE No.:	MW1	7-1	7-d					B	OR	FH		E I	00	`	
		G		ELEV	ATION:	77.	24	m					F	Page:	1	,	of	1	•	
															LEC	EN	D			
	=NI: <u>I</u> C	own of	Greater Napanee C/o EN	/B Enginee	ring Inc.	-towator -		tmont [Diant				ss s	Split Sp	boon					
		200 V	Chrical Investigation for	upgrades t	o Napanee Was	stewater	rea	timent F	lant				GS /	Auger &	Sampl	е				
		BV.	S Wheeler	nee, on	CHECKED B	V		S Du	netan				1	Nater I	_evel					
	F (STAR	ы. _– т).	24 November 20	17	DATE (FINIS	ч. Н):	24	Noven	nber 2	017		0	Ņ	Vater c	onten	: (%) ite (%)	`			
					MONITO	DR						• 1	N F	Penetra Solit Sr	ation I	ndex l) Dasec e	d on		
SC	ALE	>	STRATIGRAPHY		WELL			SAI		DATA	-	• 1	N F	Penetra Dvnami	tion Ir c Con	dex ba	ased (ple	วท		
Depth	vation (m)	igraph		OF			state	be and imber	covery	OVC	etration < / RQE	∆ (□ (S	Cu S Cu S	Shear	Streng Streng	th bas th bas	sed o sed o f Soil	n Fiel n Lab	d Va Van	ine 1e
BCC	Ele	Strat		501	0.70- 0.63-	F	0)	Т ^Т УК	Re	0	Pen	Ă	F	Shear S Pocket	Streng Pene	th bas trome	sed o ter	n		
meters	77.24		GROUND SURF	ACE					%	ppm	Ν	10	50kP 20	CALE I a 10 <u>30</u>	-OR 1 00kPa 40	EST 150 50 6	RESU kPa 30 7	JLTS 200k 0 8f	(Pa) 9	0
-	77.0		TOPSOIL- (Approxima ∖mm thick)	tely 200 /	0.46		М	SS1	12/24		4	•		_				\vdash		-
- 1.0	76.4		FILL- Sandy Silt, loose	, brown,	WL 0.71 - 0.91 -			SS2	24/24		7	•								
Ē			CLAY AND SILT- Very brown, damp.	stiff,			\square	SS3	24/24		13					<u> </u>				
- 2.0			,p-				Ħ	004								<u> </u>				
- 3.0	74.2				_	\otimes		554	24/24		9					<u> </u>				
	74.2		SILTY CLAY- Very stift damp, trace sand veins	, grey, s.	Cutting and		M	SS5	24/24		10		_	-		+	$\left - \right $	├-▲		
- 4.0			F,		Cuttings —		$\overline{\mathbb{N}}$	SS6	24/24		15		•			—		\square		_
E							H						_	_				\square		
5.0							Å	SS7	24/24		5	•								
- - 60			*Becoming stiff				X	SS8	24/24		6	•	4					\square		_
					6.40-		\square	SS9	24/24		4	•		-						
- 7.0								SS10	24/24		3	•				_				
E					Bentonite —		A	SS11	24/24		5	•				<u> </u>				
			*Becoming firm					6610	24/24		4					<u> </u>				
9.0	68.1		SAND Compact light	brown	8.84— 9.09—		A	3312	24/24		4	-	1	-		-				<u> </u>
			wet.	brown,	Sand -		Å	SS13	24/24		0 (_		-		\square		
					0010011		М	SS14	24/24		10	•				<u> </u>				
	66.6		LIMESTONE- Medium	strong,	10.62 10.67		T													
			thickly bedded, horizon slightly weathered, goo	tal, d quality					61/65		83									
≝_ 12.0			based on RQD.											_						
			*Becoming excellent qu	uality	Bentonite -> Seal in Rock	-								-		<u> </u>				
- ⊡-13.0			based on RQD	2					59/59		100					<u> </u>				
														-	_	+		\vdash		-
<u> </u>	63.4		End of borehole	at	13.82-								+		-	-		$\mid \downarrow \downarrow$		
8-			approximately 13.8 limestone.	m in												<u> </u>		\square		
⊑ 15.0																<u> </u>				
																<u> </u>				
≩ <u> </u> 16.0																				
	:																			
*No sh	een odou	ir or st	aining noted in borehole		toff															
*Pocke	et penetro	meter	readings are for internal	GHD use of	only and should	not be re	lied	upon b	y othe	rs.										
- ا ل																				

REFEF	RENCE No	o.:	11140477-A2									ENCLC	SUF	RE N	o.:			19		
				BORE	EHOLE No.:	MW17	7-1	7-s					BO	RE	нс)LE	E L/	OG		
		G	HD	ELEV	ATION:	77.2	2 ו	m					Pag	je:	1	, <u> </u>	of	1	•	
														L	EG	ENC)			
	=NI: <u>I</u> 0	wn of	Greater Napanee C/o EV	/B Enginee	ring Inc.	towator T		tmant D	lant			Ss	Spli	t Spo	on		-			
		200 V	Nator Street West Napa	upgrades to	o Napanee was	tewater I	rea	itment P	lant			GS	Aug	er Sa	mple	÷				
		<u>300 (</u>	S Wheeler	nee, on		<i>.</i>		S Dun	etan			∑ SI	Wat	ter Le	vel					
	F (STAR	ы. т).	24 November 20	17	DATE (FINISH		24	Novem	ber 2	017		0	Wat	er cor	tent	(%)				
		·/· _				B						• N	Pen	etration t	on In	dex b	ased	lon		
SC	ALE		STRATIGRAPHY		WELL			SAN	IPLE I			• N	Pen	etratic	on Ind	lex ba	ised c	n		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDRO	OF DCK	0.83 <i>—</i> 0.76 <i>—</i>		State	Type and Number	Recovery	OVC	Penetration Index / RQD	△ Cu □ Cu S	She She Sen She Poc	ar Str ar Str sitivit ar Str ket Po	rengt rengt y Val rengt enetr	h bas h bas lue of h bas romet	ed or ed or Soil ed or ed or	n Fiel n Lab n	d Va Van	ne e
meters	77.22		GROUND SURF	ACE					%	ppm	Ν	10 50	SCAI	_E FC		EST F		JLTS 200k	Pa	0
_	77.0		TOPSOIL- (Approxima	tely 200 🦯	0.46		I						20 3	4	<u> </u>					
1.0	76.4		∩ Inferred fill based on \MW17-17-d	·/ ////////////////////////////////	0.46 WL 0.62 0.91 Solid Pipe															
F			Inferred clay and silt ba MW17-17-d	ased on	Cuttings															
- 2.0							L													
E ₃₀	74.2				3.05-		ł													
	74.2		Inferred silty clay based	d on	5.05															
E 4.0							ł													
					Bentonite															
- 5.0																				
					5 70												_			
6.0					6.10-															
F																				
- 7.0					Screen Silica Sand															
E	69.6		End of borehole	at	7.62-															
8.0			approximately 7.6	B m.																
E																				
.⊢ 9.0																	_			
																	_			
																	_			
																	_			
₹ 																				
14.0																	$ \dashv$			
15.0													-				\dashv			
1 1 1																	_			
16.0																				
NOTES	S: Jeen odou	Ir or et	aining noted in borehole																	
*Boreh	ole locati	on and	d elevation surveyed by (GHD field st	aff	not he roli	<u>م</u> ط	unon bu	otho	re										
	st penetro	metel	readings are for internal		niny and Should I		eu	ароп ру	oule	13.										

REFER	RENCE No	o.:	11140477-A2	_						ENCLO	SUR	E No.	:		20		
				BOREHOLE No.:	BH18	-17					BOI	RFH		FI	00		
		G	HD	ELEVATION:	77.62	m				•	Pag	e: 1		of	1	•	
												LE	GEN	D			
	ENT: <u>To</u>	wn of	Greater Napanee C/o E	B Engineering Inc.		- 1 1	Dianat			🔀 ss	Split	Spoon		_			
		Geote	Chnical Investigation for	Jpgrades to Napanee Waster	water Tre	atment	Plant			GS	Auge	er Sam	ole				
	CRIBED	<u>300 (</u> BV·	S Wheeler			S Du	netan			v si ▼	Wate	er Leve	e I				
		T):	24 November 20	DATE (FINISH):	2	4 Nover	nber 2	017		。 —	Wate	er conte	nt (%) nite (%	6			
	- (• N	Pene	etration Spoon	Index	based le	d on		
SC		>	SIF	ATIGRAPHY		SA				• N	Pene	tration	Index b	ased ased	on		
Depth) (raph	DES	SCRIPTION OF	<u>a</u>	and ber	very	· د	ation RQD	∆ Cu ⊐ Cu	Shea	ar Strer	igth ba	ised o	n Fiel	d Va	ine
BGS	(m	ratigi	SOIL	AND BEDROCK	Sta	Lype Num	Jeco	NO I	enetr dex /	S A	Sens	sitivity \ ar Strer	alue o ligth ba	of Soil ised o	n	- Car	
	ш	Sti						(<u> </u>		Pock	et Pen	etrome	eter			
meters	77.62		GR	OUND SURFACE			%	ppm	Ν	50 10 2	80AL kPa 20 30	100kPa	150 50	0kPa 60 7	200k	(Pa) 9	10
			FILL- Gravel, dense, g *Becoming Gravel som	rey, damp. e Sand and Silt, brown and g	rey.	SS1	20/24		24		•						
- 1.0	76.6		- → *Becoming Gravelly Sil	t dark brown, damp		SS2	22/24		11	•							-
E			CLAY AND SILT- Very	stiff, brown, damp.	[_				
- 2.0					X	SS3	24/24		24		•						
_						SS4	24/24		19								-
- 3.0					E E												-
-						555	24/24		11							-	
- 4.0						SS6	24/24		17	•							
-	73.1		SILTY CLAY- Very stift	, grey, damp, trace sand vein	s.	SSZ	24/24		6	•							
- 5.0									Ū								
E 60					Z	SS8	24/24		8	•							-
			*Becoming stiff			SS9	24/24		3	•					\square		
F 7.0			*Becoming firm. moist						4								
			3 , 11		É	5510	24/24		4	• 4							
- 8.0					X	SS11	24/24		3	•							
-					$\overline{\mathbf{x}}$	5512	24/24		4	• 4							<u> </u>
9.0	68.5		SAND- Loose light bro	wn wet some silt seams	£				-				-				
			(approximately 200 mm	thick).	Ľ	SS13	24/24		7	•							
						SS14	24/24		10	•							
					Ē	0015	04/04		П			_	_		\vdash		-
	66.3		Auger refusal	at approximately 11.3 m		5515	24/24		п						\square		
			Auger refusar	at approximately 11.0 m.													
≣ ⊡ 13.0													_				-
															\square		
E 15.0												_			\vdash		
16.0													_	-			
NOTES	S: Ieen odou	ir or st	aining noted in borehole														
*Boreh	nole locati	on and	d elevation surveyed by C readings are for internal	HD field staff GHD use only and should no	t be relier	d upon h	v othe	rs.									
							, 5010										

REFER	ENCE N	0.:	11140477-A2	-						ENCI	.OSL	JRE N	lo.:			21		
		G		BOREHOLE No.:	BH19-	17					B	ORE	EHC)LE	E L(OG	i	
				ELEVATION:	76.99	m					P	age:	1	_ (of _	1		
CLIE	ENT: To	own of	Greater Napanee C/o EV	'B Engineering Inc.								ļ	LEG	EN	2	-		
PRC	JECT:	Geote	chnical Investigation for l	Jpgrades to Napanee Waste	water Tre	atment I	Plant				SS S	olit Sp Jaer S	oon ample	Ż				
LOC	ATION:	300 \	Nater Street West, Napa	nee, On							ST S	nelby ⁻	Tube					
DES	CRIBED	BY:	S. Wheeler	CHECKED BY:		S. Du	nstan			Ţ	N	ater L	evel	(0())				
DAT	E (STAR	T):	24 November 201	7 DATE (FINISH):	2	4 Nover	nber 2	017		Щ	A	terber	g limi	(%) ts (%))			
SC	ALE		STF	ATIGRAPHY		SA	MPLE I	DATA		1 • 1 •	N P S N P	enetra olit Sp enetrat	tion In oon si ion Ind	idex b ample dex ba)ased ; ased o	on on		
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	ovc.	Index / RQD	∆ (□ (S	Cu S Cu S Su S P	near S near S ensitiv near S ocket I	trengt trengt ity Va trengt Penet	h bas h bas lue of h bas romet	ed or ed or Soil sed or sed or	າ Fielo າ Lab າ	d Var Vane	10 Э
meters	76.99		GRO	OUND SURFACE			%	ppm	Ν	10	SC 50kPa	ALE F	OR T ^{0kPa}	EST 150	RESU	ILTS 200k	Pa 90	
_	76.9		TOPSOIL- (Approximat	tely 125 mm thick)	/\	SS1	6/24		4	•								
- 1.0			FILL- Sand, very loose,	brown, damp.		SS2	24/24		2	•						=	=	
2.0	75.2		*Becoming wet CLAY AND SILT- Very	stiff, brown, damp,	{\[\]	SS3	22/24		2	•						_	+	
3.0						SS4	14/24		10	•								
						SS5	24/24		12	•						_		
4.0	72 /					SS6	24/24	-	16		•						\pm	
5.0	72.4		SILTY CLAY- Very stiff	, grey, damp, trace sand vein	is.	SS7	24/24	·	7	•								
6.0			*Becoming stiff and mo	ist		SS8	24/24		15	•	•							
7.0						SS10	24/24		9	•						\pm	$ \rightarrow$	
8.0					k	SS11	24/24		1	•	-					+	_	
			*Becoming firm			SS12	24/24	-	3	•	•					_	_	
	07.4		*FV > 90 kPa vane cap	acity.		FV1										_	_	
10.0	67.1		SAND- Dense, light bro	own, wet.		SS13	24/24	L	33			•				\pm		
11.0	65.6		*Silt seam (approximate	ely 125 mm thick)	¥	SS14	24/24		13							\pm	\pm	
12.0			Auger refusal	at approximately 11.4 m.														
																_	_	
s⊢ 13.0												-				\pm	\pm	
14.0																\pm		
											_					+	_	
15.0											-	_			=	\dashv	#	
												_			=	\mp	\pm	
																\pm	_	
	:																	
*No sh *Boreh *Pocke	een odou ole locati et penetro	ur or st ion and ometer	aining noted in borehole d elevation surveyed by G readings are for internal	HD field staff GHD use only and should no	t be relied	d upon b	y othe	ers.										

REFER	RENCE NO	o.:	11140477-A2	-						ENCL	.OSU	RE N	lo.: _		2	2	
		G	Ð	BOREHOLE No.: _	BH20-	·17					BC	RE	HO	LE	LC	G	
				ELEVATION:	77.87	m					Pa	ge:	1	0	f <u>1</u>	_	
CLIE	ENT: To	wn of	Greater Napanee C/o EV	'B Engineering Inc.								Ľ	EG	END			
PRC	DJECT:	Geote	chnical Investigation for I	Jpgrades to Napanee Waste	ewater Tre	atment	Plant			∐ s	is Sp S Au	lit Spo ner Sa	oon amole				
LOC	ATION:	300 \	Nater Street West, Napa	nee, On						⊠ s	T Sh	elby T	ube				
DES	SCRIBED	BY:	S. Wheeler	CHECKED BY:		S. Du	nstan			Ţ	W	ater Le	evel				
DAT	E (STAR	T):	27 November 201	7 DATE (FINISH)):2	7 Nover	nber 2	017		°	Wa Att	ater co erberg	ntent (g limits	%) S (%)			
SC	ALE		STF	ATIGRAPHY		SA	MPLE [DATA		• N • N	l Pe Sp I Pe	netrati lit Spo netrati	ion Ind oon sa on Inde	dex ba mple ex bas	ased on	n	
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	CRIPTION OF AND BEDROCK	State	Type and Number	Recovery	OVC	Penetration Index / RQD	A C □ C S ▲	Dy Su Sh Su Sh Se Sh Po	namic ear St ear St nsitivi ear St cket P	Cone rength rength ty Valu rength Penetro	sampl base base ue of base omete	e ed on I ed on I Soil ed on er	Field Lab V	Vane /ane
meters	77.87		GRO	OUND SURFACE			%	ppm	Ν	10	SCA 50kPa	ALE FO	DR TE	ST R 150ki	ESUL Pa 70	TS 200kPa	a 90
_		\bigotimes	FILL- Gravelly Sand, lo	ose, brown, damp.	X	SS1	18/24		8	•							
- 1.0	76.9 76.9		*Becoming Sandy Silt s	ome Gravel, dark brown pproximately 50 mm thick)	/2	SS2	16/24		4	•					_		
2.0			FILL- Sand some Silt,	oose, dark brown, damp.	🛛	SS3	15/24		5	•					_		-
	75.2		CLAY AND SILT- Very	stiff, brown, damp.		SS4	20/24		11	•		-			_		A
- 3.0	74.7		SILTY CLAY- Very stiff	, grey, damp, trace sand vei	ns.	SS5	24/24		6	•							
- 4.0						SS6	24/24		12	•		-		•			
5.0						SS7	24/24		8	•					_	•	
						SS8	24/24		10	•		-					_
- 6.0 -						SS9	24/24		4	•				•	\pm		_
- 7.0			*Becoming stiff			SS10	24/24		7	•		•			_		_
8.0						SS11	24/24		3	•					_		
- 9.0			*Becoming firm			SS12	24/24		3	•	•				_		
11/1/18						SS13	24/24		3	•		-					_
	67.7		SAND SOME SILT AND	GRAVEL- Compact, light	¥	SS14	24/24		13	•		-			_		_
⁰⁰ - 11.0			*Becoming Sand, loose			SS15	20/24		6	•		-			_		-
≦12.0	65.8		*Becoming compact	at approximately 12.1 m	X	SS16	24/24		13	•					+		\pm
5, 2017.G			Auger reiusar	at approximatory 12.1 m.					-						_		+
									-						_		+
s – 14.0									-			-			+		+
Hand 15.0									-						\pm		\pm
477-A2															+		
∳ <u></u> 16.0															\pm		
	 }·																
*No sh *Boreh *Pocke	neen odou nole locati et penetro	ir or st on and meter	aining noted in borehole d elevation surveyed by G readings are for internal	HD field staff GHD use only and should no	ot be relied	d upon b	y othe	rs.									

Appendix D

Single Well Response Test Results

Appendix E

Groundwater Analytical Results and Certificates of Analysis

	Conserved		Napanee Sar	nitary Se	ewer ¹		Napanee Sto	orm Sew	/er ²			PWQ	O^3		In	terim PV	VQO ⁴	
Well ID	Material	CoA	Exceeding Parameter	Units	Value	Limit	Exceeding Parameter	Units	Value	Limit	Exceeding Parameter	Units	Value	Limit	Exceeding Parameter	Units	Value	Limit
			No Exceedances				Manganese - Total	mg/L	0.0631	0.05	No Exceedances				Aluminum - Total	mg/L	0.0837	0.075
							Total Suspended Solids	mg/L	23.3	15					Cobalt - Total	mg/L	0.00103	0.0009
04 Dece		10500055													Phosphorus - Total	mg/L	0.0111	0.01-0.03
04 Deep	Silty clay	L2566855													Phosphorus (P)- Total	mg/L	<0.050	0.01-0.03
															Cobalt - Dissolved	mg/L	0.00093	0.0009
															Phosphorus (P) - Dissolved	mg/L	<0.050	0.01 - 0.03
			No Exceedances				Manganese - Total	mg/L	0.554	0.05	Iron (total)	mg/L	26.4	0.3	Aluminum - Total	mg/L	21.0	0.075
							Phosphorus (P) - Total	mg/L	0.85	0.3	Nickel	mg/L	0.0287	0.025	Cobalt - Total	mg/L	0.0129	0.0009
							Total Suspended Solids	mg/L	140	15	Silver	mg/L	<0.00050	0.0001	Copper, Total	mg/L	0.0353	0.005
							Zinc - Total	mg/L	0.097	0.04	Zinc	mg/L	0.097	0.03	Lead, Total	mg/L	0.0247	0.005
00	Silty clay	10500055													Phosphorus, Total	mg/L	0.148	0.01-0.03
06	and slity	L2566855													Phosphorus (P), Total	mg/L	0.85	0.01-0.03
	Sanu														Thallium	mg/L	0.00031	0.0003
															Vanadium	mg/L	0.0438	0.006
															Zinc (total)	mg/L	0.097	0.02
															Phosphorus (P) - Dissolved	mg/L	<0.050	0.01-0.03

General Notes: ¹ Greater Napanee Sewer Use By-Law Table 1 - Limits for Discharges to Sanitary Sewers - By-law 2012-39

² Greater Napanee Sewer Use By-Law Table 2 - Limits for Discharges to Storm Sewers - By-law 2012-39

³ Table 2 - Provincial Water Quality Objectives

⁴ Table 2 - Interim Provincial Water Quality Objectives

Certificate of Analysis supersedes results presented here in case of any discrepancy.

Only parameters presented in Certificate of Analyses were analyzed. Criteria not assessed where noted.

Some parameter limits in the PWQO depend on the result of other parameters (e.g. Aluminum limits are dependent on pH values). An effort to adjust for these dependencies was made herein.

Specific: Italics indicate that the detection limit is higher than the regulagory limit

Appendix E - Groundwater Analytical Results and Certificates of Analysis

Thurber Engineering Ltd. (Oakville) ATTN: Rachel Bourassa 2010 Winston Park Drive Unit 103 Oakville ON L6H 5R7 Date Received:15-MAR-21Report Date:15-APR-21 12:05 (MT)Version:FINAL REV. 5

Client Phone: 905-829-8666

Certificate of Analysis

Lab Work Order #: L2566855 Project P.O. #: NOT SUBMITTED Job Reference: 30726 C of C Numbers: Legal Site Desc:

Comments: ADDITIONAL 23-MAR-21 08:39

AmindaOughold

Amanda Overholster Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Summary of Guideline Exceedances

Guideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit
Ontario Pro	ovincial Water Quality Object	ives (JULY, 1994) - Surface Wa	ater PWQO			
L2566855-1	BH06	Anions and Nutrients	Phosphorus, Total	0.148	0.01	mg/L
		Total Metals	Aluminum (Al)-Total	21.0	0.015	mg/L
			Cadmium (Cd)-Total	0.000148	0.0001	mg/L
			Cobalt (Co)-Total	0.0129	0.0009	mg/L
			Copper (Cu)-Total	0.0353	0.001	mg/L
			Iron (Fe)-Total	26.4	0.3	mg/L
			Lead (Pb)-Total	0.0247	0.001	mg/L
			Nickel (Ni)-Total	0.0287	0.025	mg/L
			Phosphorus (P)-Total	0.85	0.01	mg/L
			Silver (Ag)-Total	<0.00050	0.0001	mg/L
			Thallium (TI)-Total	0.00031	0.0003	mg/L
			Vanadium (V)-Total	0.0438	0.006	mg/L
			Zinc (Zn)-Total	0.097	0.02	mg/L
		Dissolved Metals	Phosphorus (P)-Dissolved	<0.050	0.01	mg/L
L2566855-2	BH04D	Anions and Nutrients	Phosphorus, Total	0.0111	0.01	mg/L
		Total Metals	Aluminum (Al)-Total	0.0837	0.015	mg/L
			Cobalt (Co)-Total	0.00103	0.0009	mg/L
			Phosphorus (P)-Total	<0.050	0.01	mg/L
		Dissolved Metals	Cobalt (Co)-Dissolved	0.00093	0.0009	mg/L
			Phosphorus (P)-Dissolved	<0.050	0.01	mg/L

L2566855 CONT'D.... Job Reference: 30726 PAGE 3 of 15 15-APR-21 12:05 (MT)

Physical Tests - WATER

		L	.ab ID	L2566855-1	L2566855-2
	5	Sample	e Date	12-MAR-21	12-MAR-21
		Sam	ple ID	BH06	BH04D
	(Guide	Limits		
Analyte	Unit	#1	#2		
Colour, Apparent	CU	-	-	47.7 PEHR	<2.0 PEHR
Conductivity	umhos/cm	-	-	867	850
Hardness (as CaCO3)	mg/L	-	-	418	383
рН	pH units	6.5-8.5	-	7.60	7.91
Total Suspended Solids	mg/L	-	-	140 DLHC	23.3
Total Dissolved Solids	mg/L	-	-	506 DLDS	468 DLDS
Turbidity	NTU	-	-	201 PEHR	11.3 PEHR

Guide Limit #1: Surface Water PWQO

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 4 of 15 15-APR-21 12:05 (MT)

Anions and Nutrients - WATER

		L	ab ID	L2566855-1	L2566855-2
		Sample	Date	12-MAR-21	12-MAR-21
		Sam	ole ID	BH06	BH04D
		Guide L	imits		
Analyte	Unit	#1	#2		
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	358	297
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	<2.0	<2.0
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	<2.0	<2.0
Alkalinity, Total (as CaCO3)	mg/L	-	-	358	297
Ammonia, Total (as N)	mg/L	-	-	0.022	0.050
Bromide (Br)	mg/L	-	-	<0.10	<0.10
Chloride (CI)	mg/L	-	-	59.2	71.8
Computed Conductivity	uS/cm	-	-	798	801
Conductivity % Difference	%	-	-	-8	-6
Fluoride (F)	mg/L	-	-	0.093	0.143
Hardness (as CaCO3)	mg/L	-	-	418	383
Ion Balance	%	-	-	121	120
Langelier Index		-	-	1	1
Nitrate and Nitrite as N	mg/L	-	-	0.98	0.444
Nitrate (as N)	mg/L	-	-	0.980	0.425
Nitrite (as N)	mg/L	-	-	<0.010	0.019
Saturation pH	pН	-	-	6.86	7.15
Orthophosphate-Dissolved (as P)	mg/L	-	-	0.0101	<0.0030
Phosphorus, Total	mg/L	0.01	-	0.148	0.0111
TDS (Calculated)	mg/L	-	-	493	480
Sulfate (SO4)	mg/L	-	-	28.8	56.0
Anion Sum	me/L	-	-	8.24	8.15
Cation Sum	me/L	-	-	9.98	9.81
Cation - Anion Balance	%	-	-	10	9

Guide Limit #1: Surface Water PWQO

Det

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 5 of 15 15-APR-21 12:05 (MT)

Organic / Inorganic Carbon - WATER

		L	ab ID	L2566855-1	L2566855-2
		Sample	Date	12-MAR-21	12-MAR-21
		Samp	ne iD	BH00	BH04D
		Guide L	.imits		
Analyte	Unit	Guide L #1	imits #2		

Guide Limit #1: Surface Water PWQO

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 6 of 15 15-APR-21 12:05 (MT)

Inorganic Parameters - WATER

		Lab ID	L2566855-1	L2566855-2
	Sam	ple Date	12-MAR-21	12-MAR-21
	S	ample ID	BH06	BH04D
Analyte	Gui Unit #	de Limits 1 #2		

Guide Limit #1: Surface Water PWQO

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 7 of 15 15-APR-21 12:05 (MT)

Total Metals - WATER

		Lab ID Sample Date Sample ID		L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D	
Analyte	Unit	Guide #1	Limits #2			_
Aluminum (Al)-Total	mg/L	0.015	-	21.0 DLHC	0.0837	
Antimony (Sb)-Total	mg/L	0.02	-	<0.0010 ^{DLHC}	0.00022	
Arsenic (As)-Total	mg/L	0.005	-	0.0039 ^{DLHC}	0.00117	
Barium (Ba)-Total	mg/L	-	-	0.596 DLHC	0.214	
Beryllium (Be)-Total	mg/L	0.011	-	<0.0010 ^{DLHC}	<0.00010	
Bismuth (Bi)-Total	mg/L	-	-	<0.00050	<0.000050	
Boron (B)-Total	mg/L	0.2	-	<0.10 ^{DLHC}	0.040	
Cadmium (Cd)-Total	mg/L	0.0001	-	0.000148	<0.0000050	
Calcium (Ca)-Total	mg/L	-	-	183 DLHC	70.1	
Cesium (Cs)-Total	mg/L	-	-	0.00154	0.000013	
Chromium (Cr)-Total	mg/L	-	-	0.0316 ^{DLHC}	<0.00050	
Cobalt (Co)-Total	mg/L	0.0009	-	0.0129 ^{DLHC}	0.00103	
Copper (Cu)-Total	mg/L	0.001	-	0.0353 ^{DLHC}	<0.00050	
Iron (Fe)-Total	mg/L	0.3	-	26.4 DLHC	0.086	
Lead (Pb)-Total	mg/L	0.001	-	0.0247 ^{DLHC}	0.000082	
Lithium (Li)-Total	mg/L	-	-	0.022 DLHC	0.0075	
Magnesium (Mg)-Total	mg/L	-	-	49.0 DLHC	45.0	
Manganese (Mn)-Total	mg/L	-	-	0.554 DLHC	0.0631	
Mercury (Hg)-Total	mg/L	0.0002	-	0.0000065	<0.0000050	
Molybdenum (Mo)-Total	mg/L	0.04	-	0.00056 ^{DLHC}	0.00316	
Nickel (Ni)-Total	mg/L	0.025	-	0.0287 ^{DLHC}	0.00173	
Phosphorus (P)-Total	mg/L	0.01	-	0.85 DLHC	<0.050	
Potassium (K)-Total	mg/L	-	-	8.15 DLHC	2.47	
Rubidium (Rb)-Total	mg/L	-	-	0.0373 ^{DLHC}	0.00172	
Selenium (Se)-Total	mg/L	0.1	-	<0.00050	0.000258	
Silicon (Si)-Total	mg/L	-	-	46.6 DLHC	11.0	
Silver (Ag)-Total	mg/L	0.0001	-	<0.00050	<0.000050	
Sodium (Na)-Total	mg/L	-	-	36.3 DLHC	45.5	
Strontium (Sr)-Total	mg/L	-	-	0.496 DLHC	0.969	
Sulfur (S)-Total	mg/L	-	-	10.4 DLHC	22.1	

Guide Limit #1: Surface Water PWQO

L2566855 CONT'D.... Job Reference: 30726 PAGE 8 of 15 15-APR-21 12:05 (MT)

Total Metals - WATER

		L Sample	.ab ID e Date	L2566855-1 12-MAR-21	L2566855-2 12-MAR-21	
		Sam	ple ID	BH06	BH04D	
Analyte	Unit	Guide Limits #1 #2				
Tellurium (Te)-Total	mg/L	-	-	<0.0020	<0.00020	
Thallium (TI)-Total	mg/L	0.0003	-	0.00031	0.000016	
Thorium (Th)-Total	mg/L	-	-	0.0053 ^{DLHC}	<0.00010	
Tin (Sn)-Total	mg/L	-	-	0.0011 ^{DLHC}	0.00198	
Titanium (Ti)-Total	mg/L	-	-	1.26 DLHC	0.00445	
Tungsten (W)-Total	mg/L	0.03	-	<0.0010	<0.00010	
Uranium (U)-Total	mg/L	0.005	-	0.00123	0.00221	
Vanadium (V)-Total	mg/L	0.006	-	0.0438 ^{DLHC}	0.00136	
Zinc (Zn)-Total	mg/L	0.02	-	0.097 DLHC	<0.0030	
Zirconium (Zr)-Total	mg/L	0.004	-	<0.0020	<0.00020	

Guide Limit #1: Surface Water PWQO

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 9 of 15 15-APR-21 12:05 (MT)

Dissolved Metals - WATER

		l Sample Sam	_ab ID e Date ple ID	L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D
Analyte	Unit	Guide #1	Limits #2		
Dissolved Mercury Filtration Location		-	-	LAB	FIELD
Dissolved Metals Filtration Location		-	-	LAB	LAB
Aluminum (AI)-Dissolved	mg/L	0.015	-	<0.0050	<0.0050
Antimony (Sb)-Dissolved	mg/L	0.02	-	0.00020	0.00020
Arsenic (As)-Dissolved	mg/L	0.005	-	0.00032	0.00142
Barium (Ba)-Dissolved	mg/L	-	-	0.210	0.221
Beryllium (Be)-Dissolved	mg/L	0.011	-	<0.00010	<0.00010
Bismuth (Bi)-Dissolved	mg/L	-	-	<0.000050	<0.000050
Boron (B)-Dissolved	mg/L	0.2	-	0.026	0.045
Cadmium (Cd)-Dissolved	mg/L	0.0001	-	0.0000572	<0.000050
Calcium (Ca)-Dissolved	mg/L	-	-	117	72.3
Cesium (Cs)-Dissolved	mg/L	-	-	<0.000010	<0.000010
Chromium (Cr)-Dissolved	mg/L	-	-	<0.00050	<0.00050
Cobalt (Co)-Dissolved	mg/L	0.0009	-	0.00016	0.00093
Copper (Cu)-Dissolved	mg/L	0.001	-	0.00065	0.00040
Iron (Fe)-Dissolved	mg/L	0.3	-	<0.010	<0.010
Lead (Pb)-Dissolved	mg/L	0.001	-	0.000124	<0.000050
Lithium (Li)-Dissolved	mg/L	-	-	0.0046	0.0095
Magnesium (Mg)-Dissolved	mg/L	-		30.5	49.2
Manganese (Mn)-Dissolved	mg/L	-	-	0.0253	0.0588
Mercury (Hg)-Dissolved	mg/L	0.0002	-	<0.0000050	<0.000050
Molybdenum (Mo)-Dissolved	mg/L	0.04	-	0.00177 ^{ptc}	0.00331
Nickel (Ni)-Dissolved	mg/L	0.025	-	0.00133	0.00161
Phosphorus (P)-Dissolved	mg/L	0.01	-	<0.050	<0.050
Potassium (K)-Dissolved	mg/L	-	-	2.22	2.64
Rubidium (Rb)-Dissolved	mg/L	-	-	0.00074	0.00164
Selenium (Se)-Dissolved	mg/L	0.1	-	0.000551	0.000327
Silicon (Si)-Dissolved	mg/L	-	-	9.66	11.8
Silver (Ag)-Dissolved	mg/L	0.0001	-	<0.000050	<0.000050
Sodium (Na)-Dissolved	mg/L	-	-	35.9	47.9

Guide Limit #1: Surface Water PWQO

L2566855 CONT'D Job Reference: 30726 PAGE 10 of 15 15-APR-21 12:05 (MT)

Dissolved Metals - WATER

		L Sample Sam	ab ID Date Date ID	L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D	
Analyte	Unit	Guide #1	Limits #2			
Strontium (Sr)-Dissolved	mg/L	-	-	0.347	0.990	
Sulfur (S)-Dissolved	mg/L	-	-	10.8	21.3	
Tellurium (Te)-Dissolved	mg/L	-	-	<0.00020	<0.00020	
Thallium (TI)-Dissolved	mg/L	0.0003	-	<0.000010	0.000015	
Thorium (Th)-Dissolved	mg/L	-	-	<0.00010	<0.00010	
Tin (Sn)-Dissolved	mg/L	-	-	0.00203	0.00195	
Titanium (Ti)-Dissolved	mg/L	-	-	<0.00030	<0.00030	
Tungsten (W)-Dissolved	mg/L	0.03	-	<0.00010	<0.00010	
Uranium (U)-Dissolved	mg/L	0.005	-	0.000789	0.00215	
Vanadium (V)-Dissolved	mg/L	0.006	-	0.00156	0.00124	
Zinc (Zn)-Dissolved	mg/L	0.02	-	0.0018	0.0014	
Zirconium (Zr)-Dissolved	mg/L	0.004	-	<0.00020	<0.00020	

Guide Limit #1: Surface Water PWQO

D
۸.

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Additional Comments for Sample Listed:

Samplenum	Matr	iv F	Penort Remarks	Sample Comments
	IVIALI			Sample Comment
L2566855-1	wate	er i r	recoverv in LCS.	.o Iow
Qualifiara far l	ndividual Daw	omotoro I io	tod.	
Qualifier			ted:	
Qualmer	Description			
DTC	Dissolved co	ncentration e	exceeds total. Results were confirmed by i	re-analysis.
DLDS	Detection Lin	nit Raised: D	Dilution required due to high Dissolved Solie	ids / Electrical Conductivity.
PEHR	Parameter E	xceeded Re	commended Holding Time On Receipt: Pro	oceed With Analysis As Requested.
SRU	Sample Rece	eived Unpres	served. Results may be biased low for indic	cated parameter(s)
DLHC	Detection Lin	nit Raised: D	Dilution required due to high concentration of	of test analyte(s).
Methods Listed	d (if applicable	e):		
ALS Test Code) }	Matrix	Test Description	Method Reference**
625-SAN-WT	-	Water	Ontario Sanitary Sewer SVOC Target List	t SW-846 8270
Samples are	extracted with	n solvent and	then analyzed by GC/MS.	
ALD+DIEL-C	ALC-WT	Water	Aldrin + Dieldrin Calculation	CALCULATION
This calculat	tion represents	the sum of	the aldrin and dieldrin analyzed for in a give	ven sample.
		Water	Automated Creasisted Alkalinity	
ALK-SFEC-F		Water	Automated Speciated Alkalinity	AFRA 2320D
This analysis hydroxide all	s is carried out kalinity are cale	using proce culated from	dures adapted from APHA Method 2320 "/ phenolphthalein alkalinity and total alkalin	Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and nity values.
BOD-C-WT		Water	BOD Carbonaceous	APHA 5210 B (CBOD)
This analysis and incubati glass fibre fi	s is carried out ng a sample fo Iter prior to dilu	using proce or a specified ition. Carbor	dures adapted from APHA Method 5210B I time period, and measuring the oxygen de naceous BOD (CBOD) is determined by ad	- "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a dding a nitrification inhibitor to the diluted sample prior to incubation.
BR-IC-N-WT		Water	Bromide in Water by IC	EPA 300.1 (mod)
Inorganic an	ions are analy	zed by lon C	hromatography with conductivity and/or U	V detection.
CHLORDAN	E-T-CALC-WT	Water	Chlordane Total sums	CALCULATION
Aqueous sa	mple is extract	ed by liquid/	liquid extraction with a solvent mix. After ex	extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.
CL-IC-N-WT		Water	Chloride by IC	EPA 300.1 (mod)
Inorganic an	ions are analy	zed by Ion C	hromatography with conductivity and/or U	V detection.
Analysis cor	nducted in acco	ordance with	the Protocol for Analytical Methods Used i	in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
CN-TOT-WT		Water	Cyanide, Total	ISO 14403-2
Total cyanid	e is determine	d by the com	bination of UV digestion and distillation. C	Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a

combination of barbituric acid and isonicotinic acid to form a highly colored complex.

LS Test Code	Matrix	Test Description	Method Reference**
When using this method, h ALS recommends analysis	nigh levels o s for thiocya	f thiocyanate in samples can cause false nate to check for this potential interference	e positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, ce
COD-T-WT	Water	Chemical Oxygen Demand	APHA 5220 D
This analysis is carried out method.	t using proc	edures adapted from APHA Method 5220	0 "Chemical Oxygen Demand (COD)". Chemical oxygen demand is determined using the closed reflux colourimetric
COLOUR-APPARENT-WT	Water	Colour	APHA 2120
Apparent Colour is measu dependent, and apply to the	red spectrop ne pH of the	photometrically by comparison to platinur sample as received (at time of testing), v	m-cobalt standards using the single wavelength method after sample decanting. Colour measurements can be highly without pH adjustment. Concurrent measurement of sample pH is recommended.
CR-CR6-IC-WT	Water	Chromium +6	EPA 7199
This analysis is carried out The procedure involves an chromium and the chromiu	t using proce alysis for ch um (VI) resu	edures adapted from "Test Methods for E fromium (VI) by ion chromatography usin lts.	Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA og diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total
Analysis conducted in acc	ordance with	n the Protocol for Analytical Methods Use	ed in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
DDD-DDE-DDT-CALC-WT	Water	DDD, DDE, DDT sums	CALCULATION
Calculation of Total DDD,	Total DDE a	and Total DDT	
EC-SCREEN-WT	Water	Conductivity Screen (Internal Use Only)	APHA 2510
Qualitative analysis of con	ductivity wh	ere required during preparation of other t	ests - e.g. TDS, metals, etc.
EC-WT	Water	Conductivity	APHA 2510 B
Water samples can be me	asured dire	ctly by immersing the conductivity cell int	to the sample.
EC-WW-MF-WT	Water	E. Coli	SM 9222D
A 100 mL volume of samp	le is filtered	through a membrane, the membrane is	placed on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h. Method ID: WT-TM-1200
ETL-N2N3-WT	Water	Calculate from NO2 + NO3	APHA 4110 B
ETL-SILICA-CALC-WT	Water	Calculate from SI-TOT-WT	EPA 200.8
F-IC-N-WT	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by lon (Chromatography with conductivity and/or	UV detection.
HARDNESS-CALC-WT	Water	Hardness	APHA 2340 B
Hardness (also known as are preferentially used for	Total Hardne	ess) is calculated from the sum of Calciu s calculation.	m and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentration

HG-D-CVAA-WT Water Dissolved Mercury in Water by CVAAS EPA 1631E (mod)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

LS Test Code	Matrix	Test Description	Method Reference**
Analysis conducted in ac	cordance with	n the Protocol for Analytical Methods Used	in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
HG-T-CVAA-WT	Water	Total Mercury in Water by CVAAS	EPA 1631E (mod)
Water samples undergo a	a cold-oxidati	on using bromine monochloride prior to rea	duction with stannous chloride, and analyzed by CVAAS.
IONBALANCE-OP03-WT	Water	Detailed Ion Balance Calculation	APHA 1030E, 2330B, 2510A
MET-D-CCMS-WT	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtere	d (0.45 um),	preserved with nitric acid, and analyzed by	CRC ICPMS.
Method Limitation (re: Su	lfur): Sulfide	and volatile sulfur species may not be reco	overed by this method.
Analysis conducted in ac	cordance with	n the Protocol for Analytical Methods Used	in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
MET-T-CCMS-WT	Water	Total Metals in Water by CRC ICPMS	S EPA 200.2/6020A (mod)
Water samples are diges	ted with nitric	and hydrochloric acids, and analyzed by (CRC ICPMS.
Method Limitation (re: Su	lfur): Sulfide	and volatile sulfur species may not be reco	overed by this method.
Analysis conducted in ac	cordance with	n the Protocol for Analytical Methods Used	in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
METHYLNAPS-CALC-W	r Water	PAH-Calculated Parameters	SW846 8270
NH3-F-WT	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
This analysis is carried of fluorescence detection fo	ut, on sulfuric r the determi	acid preserved samples, using procedure nation of trace levels of ammonium in sea	s modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis w water", Roslyn J. Waston et al.
NO2-IC-WT	Water	Nitrite in Water by IC	EPA 300.1 (mod)
Inorganic anions are ana	yzed by Ion (Chromatography with conductivity and/or U	IV detection.
NO3-IC-WT	Water	Nitrate in Water by IC	EPA 300.1 (mod)
Inorganic anions are ana	yzed by Ion (Chromatography with conductivity and/or U	IV detection.
	Water	Nonylphenols and Ethoxylates by LC/MS-MS	J. Chrom A849 (1999) p.467-482
NP,NPE-LCMS-WT			
NP,NPE-LCMS-WT Water samples are filtered	ed and analyz	zed on LCMS/MS by direct injection.	

OGG-SPEC-CALC-WT Water Speciated Oil and Grease A/V Calc CALCULATION

Sample is extracted with hexane, sample speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then determined gravimetrically.

ethods Listed (if applic	able):		
LS Test Code	Matrix	Test Description	Method Reference**
OGG-SPEC-WT	Water	Speciated Oil and Grease-Gravimetric	2 APHA 5520 B
The procedure involve determined gravimetric	s an extraction c cally.	of the entire water sample with hexane. Sa	mple speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then
P-T-COL-WT	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
This analysis is carried	I out using proce	edures adapted from APHA Method 4500-F	P "Phosphorus". Total Phosphorus is deteremined colourimetrically after persulphate digestion of the sample.
PAH-511-WT	Water	PAH-O. Reg 153/04 (July 2011)	SW846 3510/8270
Aqueous samples, fort fluoranthene may inclu	ified with surrog de contributions	ates, are extracted using liquid/liquid extrac s from benzo(j)fluoranthene, if also present	ction technique. The sample extracts are concentrated and then analyzed using GC/MS. Results for benzo(b) in the sample.
Analysis conducted in of the Analytical Test (accordance with Group (ATG) has	n the Protocol for Analytical Methods Used s been requested (the Protocol states that a	in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a sub- all analytes in an ATG must be reported).
PAH-SUM-CALC-WT	Water	TOTAL PAH's	CALCULATION
Total PAH represents to be included.	the sum of all P	AH analytes reported for a given sample. N	Note that regulatory agencies and criteria differ in their definitions of Total PAH in terms of the individual PAH analy
PCB-WT	Water	Polychlorinated Biphenyls	EPA 8082
PCBs are extracted from	m an aqueous s	sample at neutral pH with aliquots of dichlo	romethane using a modified separatory funnel technique. The extracts are analyzed by GC/MSD.
PH-WT	Water	рН	APHA 4500 H-Electrode
Water samples are an	alyzed directly b	y a calibrated pH meter.	
Analysis conducted in samples under this reg	accordance with julation is 28 day	n the Protocol for Analytical Methods Used ys	in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for
PHENOLS-4AAP-WT	Water	Phenol (4AAP)	EPA 9066
An automated method colorimetrically.	is used to distill	the sample. The distillate is then buffered	to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured
PO4-DO-COL-WT	Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS
This analysis is carried filtered through a 0.45	l out using proce micron membra	edures adapted from APHA Method 4500-F ne filter.	P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field
SO4-IC-N-WT	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are a	nalyzed by Ion (Chromatography with conductivity and/or U	V detection.

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

SOLIDS-TSS-WT Water Suspended solids APHA 2540 D-Gravimetric

Methods Listed (if applicable): ALS Test Code Matrix **Test Description** Method Reference** A well-mixed sample is filtered through a weighed standard glass fibre filter and the residue retained is dried in an oven at 104–1°C for a minimum of four hours or until a constant weight is achieved. TKN-F-WT Water TKN in Water by Fluorescence J. ENVIRON. MONIT., 2005,7,37-42,RSC Total Kjeldahl Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection TOC-WT Water **Total Organic Carbon** APHA 5310B Sample is injected into a heated reaction chamber which is packed with an oxidative catalyst. The water is vaporized and the organic cabon is oxidized to carbon dioxide. The carbon dioxide is transported in a carrier gas and is measured by a non-dispersive infrared detector. TURBIDITY-WT Water Turbidity APHA 2130 B Sample result is based on a comparison of the intensity of the light scattered by the sample under defined conditions with the intensity of light scattered by a standard reference suspension under the same conditions. Sample readings are obtained from a Nephelometer. VOC-ROU-HS-WT Water Volatile Organic Compounds SW846 8260 Aqueous samples are analyzed by headspace-GC/MS. XYLENES-SUM-CALC-WT Water Sum of Xylene Isomer Concentrations CALCULATION Total xylenes represents the sum of o-xylene and m&p-xylene. **ALS test methods may incorporate modifications from specified reference methods to improve performance. Chain of Custody Numbers: The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location WΤ ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Quality Control Report

		Workorder:	L256685	55 R	eport Date:	15-APR-21		Page 1 of 17
Client:	Thurber Engineering Ltd 2010 Winston Park Drive Oakville ON L6H 5R7	l. (Oakville) e Unit 103						
Contact:	Rachel Bourassa							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-SPEC-PC	Γ-WT Water							
Batch WG3502803 Alkalinity, To	R5401759 -4 DUP otal (as CaCO3)	WG3502803-3 214	215		mg/L	0.5	20	16-MAR-21
Alkalinity, Bi	carbonate (as CaCO3)	214	215		mg/L	0.5	20	16-MAR-21
Alkalinity, C	arbonate (as CaCO3)	<2.0	<2.0	RPD-NA	mg/L	N/A	20	16-MAR-21
Alkalinity, H	ydroxide (as CaCO3)	<2.0	<2.0	RPD-NA	mg/L	N/A	20	16-MAR-21
WG3502803 Alkalinity, To	-2 LCS otal (as CaCO3)		98.7		%		85-115	16-MAR-21
WG3502803	-1 MB							
Alkalinity, I	otal (as CaCO3)		<2.0		mg/L		2	16-MAR-21
Alkalinity, Bi	arbonate (as CaCO3)		<2.0		mg/L		2	16-MAR-21
Alkalinity, C	vdroxide (as CaCO3)		<2.0		mg/L		2	16-MAR-21
			<2.0				2	10-WAR-21
BR-IC-N-WT	Water							
Batch WG3503957 Bromide (Br	-4 DUP	WG3503957-3 <0.10	<0.10	RPD-NA	mg/L	N/A	20	17-MAR-21
WG3503957 Bromide (Br	-2 LCS		100.6		%		85-115	17-MAR-21
WG3503957 Bromide (Br	-1 MB `)		<0.10		mg/L		0.1	17-MAR-21
WG3503957 Bromide (Br	-5 MS	WG3503957-3	101.2		%		75-125	17-MAR-21
CL-IC-N-WT	Water	*						
Batch	R5403000							
WG3503957 Chloride (Cl	-4 DUP)	WG3503957-3 1.50	1.51		mg/L	0.3	20	17-MAR-21
WG3503957 Chloride (Cl	-2 LCS)		99.8		%		90-110	17-MAR-21
WG3503957 Chloride (Cl	-1 MB)		<0.50		mg/L		0.5	17-MAR-21
WG3503957 Chloride (Cl	-5 MS)	WG3503957-3	98.0		%		75-125	17-MAR-21
COLOUR-APPA	RENT-WT Water							
Batch	R5401483							
WG3502608 Colour, App	-3 DUP arent	L2566743-1 28.3	28.7		CU	1.6	20	15-MAR-21
WG3502608	-2 LCS							

Quality Control Report

						•			
			Workorder:	L2566855	Re	port Date: 15-	APR-21		Page 2 of 17
Client:	Thurber E 2010 Win Oakville	Engineering Ltd. (ston Park Drive L ON L6H 5R7	Oakville) Jnit 103						
Contact:	Rachel B	ourassa							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
COLOUR-APP	ARENT-WT	Water							
Batch	R5401483								
WG3502608 Colour, App	3-2 LCS parent			101.8		%		85-115	15-MAR-21
WG3502608 Colour, Apr	3-1 MB parent			<2.0		CU	•	2	15-MAR-21
FC-WT		Water							10 10 10 21
Batch	R5401759	Water							
WG3502803	3-4 DUP		WG3502803-3						
Conductivit	у		613	608		umhos/cm	0.8	10	16-MAR-21
WG3502803 Conductivit	3-2 LCS y			99.7		%		90-110	16-MAR-21
WG3502803 Conductivit	3-1 MB y			<3.0		umhos/cm		3	16-MAR-21
F-IC-N-WT		Water							
Batch	R5403000								
WG3503957 Fluoride (F	7-4 DUP)		WG3503957-3 0.075	0.075		mg/L	0.1	20	17-MAR-21
WG3503957 Fluoride (F	7-2 LCS			102.3		%		90-110	17-MAR-21
WG3503957 Fluoride (F	7-1 MB			<0.020		mg/L		0.02	17-MAR-21
WG3503957	7-5 MS		WG3503957-3						
Fluoride (F)			100.5		%		75-125	17-MAR-21
HG-D-CVAA-W	/T	Water	•						
Batch	R5404178		WG3505160-3						
Mercury (H	g)-Dissolved		<0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	16-MAR-21
WG3505160	0-2 LCS								
Mercury (H	g)-Dissolved			103.0		%		80-120	16-MAR-21
WG3505160 Mercury (H	D-1 MB a)-Dissolved			<0.0000050		ma/L		0.000005	16-MAR-21
WG3505160	0-6 MS		WG3505160-5			5			10 10 10 10
Mercury (H	g)-Dissolved			99.3		%		70-130	16-MAR-21
Batch	R5407708								
WG3505214 Mercury (H	+-4 DUP g)-Dissolved		wG3505214-3 <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	22-MAR-21
WG3505214	4-2 LCS					-	÷		
Mercury (H	g)-Dissolved			94.2		%		80-120	22-MAR-21

Quality Control Report

			Workorder:	L2566855	R	eport Date: 15-A	NPR-21		Page 3 of 17
Client:	Thurber E 2010 Win Oakville	ingineering Ltd. (ston Park Drive L DN L6H 5R7	Oakville) Jnit 103						
Contact:	Rachel Bo	ourassa							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-D-CVAA-W	т	Water							
Batch WG3505214 Mercury (Hg	R5407708 -1 MB g)-Dissolved			<0.0000050	2	mg/L		0.000005	22-MAR-21
WG3505214 Mercury (Hg	-6 MS g)-Dissolved		WG3505214-5	89.5		%		70-130	22-MAR-21
HG-T-CVAA-W	г	Water							
Batch	R5401807								
WG3502836 Mercury (Hg	-4 DUP g)-Total		WG3502836-3 <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	16-MAR-21
WG3502836 Mercury (Hg	-2 LCS g)-Total			103.0		%		80-120	16-MAR-21
WG3502836 Mercury (Hg	-1 MB g)-Total			<0.0000050		mg/L		0.000005	16-MAR-21
WG3502836 Mercury (Hg	-6 MS g)-Total		WG3502836-5	99.3		%		70-130	16-MAR-21
Batch WG3505207 Mercury (Hg	R5407711 -3 DUP g)-Total		L2568290-1 <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	22-MAR-21
WG3505207 Mercury (Hg	-2 LCS g)-Total			100.0		%		80-120	22-MAR-21
WG3505207 Mercury (Hg	-1 MB g)-Total			<0.0000050]	mg/L		0.000005	22-MAR-21
WG3505207 Mercury (Hg	-4 MS g)-Total		L2568425-1	100.3		%		70-130	22-MAR-21
MET-D-CCMS-\	wт	Water							
Batch	R5403719								
WG3504802	-4 DUP		WG3504802-3	0.050					
	AI)-Dissolved	1	< 0.050	<0.050	RPD-NA	mg/L	N/A	20	18-MAR-21
Anumony (S		1	0.0027	0.0031		mg/L	14	20	18-MAR-21
Ratium (Ra) Dissolved			0.0166	0.0183		mg/L	9.4	20	18-MAR-21
			0.108	0.119		mg/L	9.7	20	18-MAR-21
Beryllium (B	e)-Dissolved	1	<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	18-MAR-21
Bismuth (Bi)-Dissolved			<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	18-MAR-21
Boron (B)-D	USSOIVED		0.35	0.40		mg/∟	15	20	18-MAR-21
Cadmium (C	d)-Dissolve	d	0.000069	0.000079		mg/L	14	20	18-MAR-21
Calcium (Ca	a)-Dissolved		132	152		mg/L	14	20	18-MAR-21
Cesium (Cs)-Dissolved			0.00015	0.00019	J	mg/L	0.00004	0.0002	18-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 4 of 17 Thurber Engineering Ltd. (Oakville) Client: 2010 Winston Park Drive Unit 103 Oakville ON L6H 5R7 Contact: Rachel Bourassa Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-D-CCMS-WT Water R5403719 Batch WG3504802-4 DUP WG3504802-3 Chromium (Cr)-Dissolved < 0.0050 < 0.0050 **RPD-NA** mg/L N/A 20 18-MAR-21 Cobalt (Co)-Dissolved 0.0077 0.0084 mg/L 8.7 20 18-MAR-21 0.0129 0.0142 Copper (Cu)-Dissolved mg/L 9.4 20 18-MAR-21 Iron (Fe)-Dissolved < 0.10 < 0.10 **RPD-NA** mg/L N/A 20 18-MAR-21 Lead (Pb)-Dissolved < 0.00050 < 0.00050 **RPD-NA** mg/L N/A 20 18-MAR-21 Lithium (Li)-Dissolved 0.336 0.379 mg/L 12 20 18-MAR-21 Magnesium (Mg)-Dissolved 45.0 49.4 mg/L 9.2 20 18-MAR-21 Manganese (Mn)-Dissolved 0.0122 0.0135 mg/L 10 20 18-MAR-21 mg/L Molybdenum (Mo)-Dissolved 0.0129 0.0146 13 20 18-MAR-21 Nickel (Ni)-Dissolved 0.0184 0.0205 mg/L 11 20 18-MAR-21 Phosphorus (P)-Dissolved <0.50 <0.50 **RPD-NA** mg/L N/A 20 18-MAR-21 Potassium (K)-Dissolved 36.0 39.9 mg/L 10 20 18-MAR-21 Rubidium (Rb)-Dissolved 0.0245 0.0273 mg/L 20 11 18-MAR-21 Selenium (Se)-Dissolved 0.0144 0.0163 mg/L 13 20 18-MAR-21 Silicon (Si)-Dissolved 0.80 0.89 mg/L 20 18-MAR-21 11 Silver (Ag)-Dissolved < 0.00050 <0.00050 mg/L **RPD-NA** N/A 18-MAR-21 20 Sodium (Na)-Dissolved 296 328 mg/L 10 20 18-MAR-21 Strontium (Sr)-Dissolved 1.85 2.12 mg/L 14 20 18-MAR-21 Sulfur (S)-Dissolved 160 179 mg/L 11 20 18-MAR-21 Tellurium (Te)-Dissolved < 0.0020 < 0.0020 **RPD-NA** mg/L N/A 20 18-MAR-21 Thallium (TI)-Dissolved < 0.00010 < 0.00010 mg/L **RPD-NA** N/A 20 18-MAR-21 Thorium (Th)-Dissolved < 0.0010 < 0.0010 mg/L **RPD-NA** 20 N/A 18-MAR-21 Tin (Sn)-Dissolved < 0.0010 < 0.0010 **RPD-NA** mg/L N/A 20 18-MAR-21 Titanium (Ti)-Dissolved < 0.0030 < 0.0030 **RPD-NA** mg/L N/A 20 18-MAR-21 Tungsten (W)-Dissolved 0.0169 0.0192 mg/L 13 20 18-MAR-21 Uranium (U)-Dissolved 0.00122 0.00134 mg/L 9.4 20 18-MAR-21 Vanadium (V)-Dissolved < 0.0050 < 0.0050 **RPD-NA** mg/L N/A 20 18-MAR-21 Zinc (Zn)-Dissolved < 0.010 < 0.010 mg/L **RPD-NA** N/A 20 18-MAR-21 Zirconium (Zr)-Dissolved < 0.0020 < 0.0020 **RPD-NA** mg/L N/A 20 18-MAR-21 WG3504802-2 LCS Aluminum (AI)-Dissolved 112.4 % 18-MAR-21 80-120 Antimony (Sb)-Dissolved 101.0 % 80-120 18-MAR-21 107.0 Arsenic (As)-Dissolved % 80-120 18-MAR-21

		Workorder	: L256685	55	Report Date: 1	5-APR-21		Page 5 of 17
Client:	Thurber Engineering L 2010 Winston Park Dri Oakville ON L6H 5R7	td. (Oakville) ve Unit 103						
Contact:	Rachel Bourassa							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS	G-WT Water							
Batch	R5403719							
WG350480 Barium (B	12-2 LCS		106 7		0/_		80.400	
Benyllium			100.7		78 9/		80-120	18-MAR-21
Bismuth (I	(De)-Dissolved		109.0		70 0/		80-120	18-MAR-21
Boron (B)			104.0		70 0/		80.120	18-MAD 21
Cadmium			104.2		20 0/		80.120	10-MAR-21
Calcium (105.2		%		80.120	18-MAR-21
			106.0		%		00-120	18-MAR-21
Cesium (C	(Cr) Dissolved		104.0		0/	*	80-120	18-MAR-21
Cobalt (Cr			104.9		0/		80.120	18-MAD 21
Copper (C			104.5		0/		80.120	18-MAD 21
Iron (Fe)-I			104.0		%		00-120 90-120	18-MAD 21
Lead (Ph)	-Dissolved		104.6		%		90 120	18-MAR-21
Lithium (I	i)-Dissolved		115.2		%		00-120 90-120	18-MAR-21
Magnesiu	m (Ma)-Dissolved		112.0		%		80 120	18-MAR-21
Mandanes	se (Mn)-Dissolved		105.1		%		80 120	18-MAR-21
Molyhden	um (Mo)-Dissolved		105.1		%		80 120	18-MAR-21
Nickel (Ni	I-Dissolved		103.2		%		80-120	18-MAR-21
Phosphore	us (P)-Dissolved		111.8		%		80-120	18-MAR-21
Potassium	(K)-Dissolved		108.9		%		80-120	18-MAR-21
Rubidium	(Rb)-Dissolved		110.0		%		80-120	18-MAR-21
Selenium	(Se)-Dissolved		101.4		%		80-120	18-MAR-21
Silicon (Si)-Dissolved		107.1		%		60-140	18-MAR-21
Silver (Ad)-Dissolved		107.7		%		80-120	18-MAR-21
Sodium (N	a)-Dissolved		110.0		%		80-120	18-MAR-21
Strontium	(Sr)-Dissolved		106.0		%		80-120	18-MAR-21
Sulfur (S)-	Dissolved		108.2		%		80-120	18-MAR-21
Tellurium	(Te)-Dissolved		96.3		%		80-120	18-MAR-21
Thallium (TI)-Dissolved		104.6		%		80-120	18-MAR-21
Thorium (Th)-Dissolved		105.2		%		80-120	18-MAR-21
Tin (Sn)-D	, Dissolved		104.5		%		80-120	18-MAR-21
Titanium (Ti)-Dissolved		104.4		%		80-120	18-MAR-21
Tunasten	(W)-Dissolved		101.8		%		80-120	18-MAR-21
Uranium (U)-Dissolved		108.8		%		80-120	18-MAR-21

		Workorder	L256685	5	Report Date: 18	5-APR-21		Page 6 of 17
Client:	Thurber Engineering Lt 2010 Winston Park Dri	td. (Oakville) ve Unit 103						
Contact:	Rachel Bourassa							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS	S-WT Water							
Batch	R5403719							
WG350480	02-2 LCS							
Vanadium	n (V)-Dissolved		108.2		%		80-120	18-MAR-21
Zinc (Zn)-	Dissolved		106.2		%		80-120	18-MAR-21
Zirconium	(Zr)-Dissolved		105.7		%		80-120	18-MAR-21
WG350480	02-1 MB		0.0050		mall		0.005	
Antimony	(Ch) Dissolved		<0.0050		mg/∟		0.005	18-MAR-21
Antimony			<0.00010		mg/∟		0.0001	18-MAR-21
Arsenic (A	As)-Dissolved		<0.00010		mg/L		0.0001	18-MAR-21
Barium (B	(Da) Dissolved		<0.00010		mg/L		0.0001	19-MAR-21
Beryllium Biomuth ((Be)-Dissolved		<0.00010		mg/∟		0.0001	18-MAR-21
Distriction (D)	Dip-Dissolved		<0.0000		mg/L		0.00005	18-MAR-21
Boron (B)			<0.010		mg/L		0.01	18-MAR-21
Cadmium			<0.00000		mg/L		0.000005	18-MAR-21
			0.216	В	mg/L		0.05	18-MAR-21
Cesium (C			<0.00001		mg/L		0.00001	18-MAR-21
Chromiun			<0.00050		mg/∟		0.0005	18-MAR-21
Cobait (C			<0.00010		mg/L		0.0001	18-MAR-21
Copper (C	Du)-Dissolved		<0.00020		mg/L		0.0002	18-MAR-21
Iron (Fe)-I	Dissolved		<0.010	•	mg/L		0.01	18-MAR-21
Lead (PD)			<0.00005	0	mg/L		0.0005	18-MAR-21
			< 0.0010	_	mg/L		0.001	18-MAR-21
Magnesiu	m (Ng)-Dissolved		0.0537	В	mg/L		0.005	18-MAR-21
Manganes	se (Mn)-Dissolved		<0.00050		mg/L		0.0005	18-MAR-21
Molybden	um (Mo)-Dissolved		<0.00005	0	mg/L		0.00005	18-MAR-21
NICKEI (NI)-Dissolved		<0.00050		mg/L		0.0005	18-MAR-21
Phosphor	us (P)-Dissolved		<0.050		mg/L		0.05	18-MAR-21
Potassiun	n (K)-Dissolved		<0.050		mg/L		0.05	18-MAR-21
Rubidium	(Rb)-Dissolved		<0.00020	-	mg/L		0.0002	18-MAR-21
Selenium	(Se)-Dissolved		<0.00005	0	mg/L		0.00005	18-MAR-21
Silicon (Si	i)-Dissolved		<0.050		mg/L		0.05	18-MAR-21
Silver (Ag)-Dissolved		<0.00005	0	mg/L		0.00005	18-MAR-21
Sodium (N	Na)-Dissolved		0.065	В	mg/L		0.05	18-MAR-21
Strontium	(Sr)-Dissolved		<0.0010		mg/L		0.001	18-MAR-21
Sulfur (S)	-Dissolved		<0.50		mg/L		0.5	18-MAR-21
Tellurium	(Te)-Dissolved		<0.00020	1	mg/L		0.0002	18-MAR-21

		N	Norkorder:	L2566855	;	Report Date:	15-APR-21		Page 7 of 17
Client:	Thurber Engine 2010 Winston Oakville ON L	eering Ltd. (Oa Park Drive Un _6H 5R7	akville) it 103						
Contact:	Rachel Bouras	sa							
Test	Mat	trix I	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS	S-WT Wa	iter							
Batch	R5403719								
WG350480	02-1 MB							0.00004	
Tharium (TI)-Dissolved			<0.000010		mg/L		0.00001	18-MAR-21
Thorium (in)-Dissolved			<0.00010		mg/L		0.0001	18-MAR-21
Titonium (<0.00010		mg/L		0.0001	18-MAR-21
Tungatan				<0.00030		mg/L		0.0003	18-MAR-21
				<0.00010		mg/L		0.0001	18-MAR-21
Vanadium				<0.000010		mg/L		0.00001	18-MAR-21
Zinc (Zn)				<0.00050		mg/L	*	0.0005	18-MAR-21
Zinc (Zn)-				<0.0010		mg/L		0.001	18-MAR-21
			W02504002 C	<0.00020		IIIg/L		0.0002	18-MAR-21
Aluminum	(AI)-Dissolved		WG3504802-6	102.3		%		70-130	18-MAR-21
Antimony	(Sb)-Dissolved			94.5		%		70-130	18-MAR-21
Arsenic (A	s)-Dissolved			75.1		%		70-130	18-MAR-21
Barium (B	a)-Dissolved			N/A	MS-B	%		-	18-MAR-21
Beryllium	(Be)-Dissolved			108.4		%		70-130	18-MAR-21
Bismuth (I	Bi)-Dissolved			99.1		%		70-130	18-MAR-21
Boron (B)	-Dissolved			N/A	MS-B	%		-	18-MAR-21
Cadmium	(Cd)-Dissolved	•		103.2		%		70-130	18-MAR-21
Calcium (Ca)-Dissolved			N/A	MS-B	%		-	18-MAR-21
Cesium (C	Cs)-Dissolved			95.5		%		70-130	18-MAR-21
Chromium	n (Cr)-Dissolved			105.3		%		70-130	18-MAR-21
Cobalt (Co	o)-Dissolved			73.7		%		70-130	18-MAR-21
Copper (C	u)-Dissolved			82.9		%		70-130	18-MAR-21
Iron (Fe)-I	Dissolved			90.3		%		70-130	18-MAR-21
Lead (Pb)	-Dissolved			100.3		%		70-130	18-MAR-21
Lithium (L	i)-Dissolved			N/A	MS-B	%		-	18-MAR-21
Magnesiu	m (Mg)-Dissolved			N/A	MS-B	%		-	18-MAR-21
Manganes	se (Mn)-Dissolved			N/A	MS-B	%		-	18-MAR-21
Phosphore	us (P)-Dissolved			116.0		%		70-130	18-MAR-21
Potassium	n (K)-Dissolved			N/A	MS-B	%		-	18-MAR-21
Rubidium	(Rb)-Dissolved			N/A	MS-B	%		-	18-MAR-21
Selenium	(Se)-Dissolved			94.0		%		70-130	18-MAR-21
Silicon (Si)-Dissolved			N/A	MS-B	%		-	18-MAR-21
Silver (Ag)-Dissolved			103.3		%		70-130	18-MAR-21

		Workorder:	L2566855	5 F	Report Date:	15-APR-21		Page 8 of 17
Client: TI 20 0	hurber Engineering Lt 010 Winston Park Dri akville_ON_L6H 5R7	td. (Oakville) ve Unit 103						
Contact: R	achel Bourassa							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-WT	Water							
Batch R54	403719							
WG3504802-5	MS	WG3504802-6	;					
Sodium (Na)-Dis	ssolved		N/A	MS-B	%		-	18-MAR-21
Strontium (Sr)-L	Dissolved		N/A	MS-B	%		-	18-MAR-21
Sulfur (S)-Disso	lved		N/A	MS-B	%		-	18-MAR-21
Tellurium (Te)-L	vissoived		95.9		%		70-130	18-MAR-21
Thailium (TI)-Dis	ssolved		100.2		%		70-130	18-MAR-21
Thorium (Th)-Di	ssoived		105.0		%		70-130	18-MAR-21
Tin (Sn)-Dissolv			103.4		% 0/	•	70-130	18-MAR-21
	ssolved		104.3		%		70-130	18-MAR-21
Lironium (LI) Dia			N/A	MS-B	% 0/		-	18-MAR-21
Vanadium (V) D	issolved		IN/A	M2-B	[%]		-	18-MAR-21
Zina (Zn) Diagol	vod		107.3		0/		70-130	18-MAR-21
Zirconium (Zr)	Veu		04.0 102.4		70 0/		70-130	18-MAR-21
	JISSOIVEU		105.4		/0		70-130	18-MAR-21
MET-T-CCMS-WT	Water							
Batch R54	401825	WC2502672.2						
Aluminum (Al)-T	otal	<0.050	<0.050	RPD-NA	mg/L	N/A	20	16-MAR-21
Antimony (Sb)-T	otal	<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Arsenic (As)-Tot	tal	<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Barium (Ba)-Tot	al	2.07	2.07		mg/L	0.1	20	16-MAR-21
Beryllium (Be)-T	otal	<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Bismuth (Bi)-Tot	tal	<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-MAR-21
Boron (B)-Total		<0.10	<0.10	RPD-NA	mg/L	N/A	20	16-MAR-21
Cadmium (Cd)-	Total	<0.000050	<0.000050) RPD-NA	mg/L	N/A	20	16-MAR-21
Calcium (Ca)-To	otal	400	404		mg/L	1.0	20	16-MAR-21
Chromium (Cr)-	Total	<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	16-MAR-21
Cesium (Cs)-To	tal	<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	16-MAR-21
Cobalt (Co)-Tota	al	<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Copper (Cu)-To	tal	<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	16-MAR-21
Iron (Fe)-Total		1.40	1.39		mg/L	0.5	20	16-MAR-21
Lead (Pb)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-MAR-21
Lithium (Li)-Tota	al	0.014	0.014		mg/L	1.6	20	16-MAR-21
Magnesium (Mg)-Total	177	178		mg/L	0.9	20	16-MAR-21

Test

Quality Control Report

Workorder: L2566855 Report Date: 15-APR-21 Page 9 of 17 Thurber Engineering Ltd. (Oakville) Client: 2010 Winston Park Drive Unit 103 Oakville ON L6H 5R7 Contact: Rachel Bourassa Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-T-CCMS-WT Water R5401825 Batch WG3502672-4 DUP WG3502672-3 Manganese (Mn)-Total 0.157 0.157 mg/L 0.1 20 16-MAR-21 Molybdenum (Mo)-Total 0.00158 0.00157 mg/L 0.5 20 16-MAR-21 < 0.0050 Nickel (Ni)-Total < 0.0050 **RPD-NA** mg/L N/A 20 16-MAR-21 Phosphorus (P)-Total < 0.50 < 0.50 **RPD-NA** mg/L N/A 20 16-MAR-21 Potassium (K)-Total 8.35 8.35 mg/L 0.1 20 16-MAR-21 Rubidium (Rb)-Total 0.0044 0.0038 mg/L 20 16-MAR-21 14 Selenium (Se)-Total < 0.00050 < 0.00050 **RPD-NA** mg/L N/A 20 16-MAR-21 mg/L Silicon (Si)-Total 11.9 12.0 0.9 20 16-MAR-21 Silver (Ag)-Total < 0.00050 < 0.00050 **RPD-NA** mg/L N/A 20 16-MAR-21 Sodium (Na)-Total 847 856 mg/L 1.1 20 16-MAR-21 Strontium (Sr)-Total 3.93 4.04 mg/L 2.6 20 16-MAR-21 Sulfur (S)-Total 8.5 8.4 mg/L 1.4 20 16-MAR-21 Thallium (TI)-Total < 0.00010 <0.00010 mg/L N/A 20 **RPD-NA** 16-MAR-21 Tellurium (Te)-Total <0.0020 <0.0020 mg/L **RPD-NA** N/A 20 16-MAR-21 Thorium (Th)-Total < 0.0010 < 0.0010 RPD-NA mg/L N/A 20 16-MAR-21 Tin (Sn)-Total <0.0010 <0.0010 mg/L **RPD-NA** N/A 16-MAR-21 20 Titanium (Ti)-Total < 0.0030 <0.0030 **RPD-NA** mg/L N/A 20 16-MAR-21 Tungsten (W)-Total <0.0010 <0.0010 **RPD-NA** mg/L N/A 20 16-MAR-21 Uranium (U)-Total 0.00030 0.00030 mg/L 1.2 20 16-MAR-21 Vanadium (V)-Total < 0.0050 < 0.0050 mg/L **RPD-NA** N/A 20 16-MAR-21 Zinc (Zn)-Total <0.030 <0.030 mg/L **RPD-NA** N/A 20 16-MAR-21 Zirconium (Zr)-Total < 0.0020 < 0.0020 RPD-NA mg/L N/A 20 16-MAR-21 WG3502672-2 LCS Aluminum (Al)-Total 105.0 % 80-120 16-MAR-21 Antimony (Sb)-Total 105.1 % 80-120 16-MAR-21 Arsenic (As)-Total % 102.0 80-120 16-MAR-21 Barium (Ba)-Total 106.0 % 80-120 16-MAR-21 Beryllium (Be)-Total 99.9 % 80-120 16-MAR-21 Bismuth (Bi)-Total 104.4 % 80-120 16-MAR-21 Boron (B)-Total 100.6 % 80-120 16-MAR-21 Cadmium (Cd)-Total 103.2 % 80-120 16-MAR-21 Calcium (Ca)-Total 102.1 % 80-120 16-MAR-21 Chromium (Cr)-Total 104.2 % 80-120 16-MAR-21

Client: Thurbano Pak Drive Unit 103 Qualitie ON LOFISAT Redeference Result Qualitie Units RPD Linit Analyzed Test Matrix Reference Result Qualities Units RPD Linit Analyzed Batch RS401225 Vester Second				Workorder	L256685	5 I	Report Date: 1	5-APR-21		Page 10 of 17
Contact: Radrell Bourassa Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-T-CCMS-WT Water Batch R5401825 State	Client:	Thurber Er 2010 Wins Oakville C	ngineering Ltd. ton Park Drive N L6H 5R7	(Oakville) Unit 103						
Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-TCCMS-WT Water Batch R5401825 WG3502722 LCS Cobat (Co)-Total 104.9 % 80-120 16-MAR-21 Cobat (Co)-Total 100.5 % 80-120 16-MAR-21 Lead (Pb)-Total 104.4 % 80-120 16-MAR-21 Lead (Pb)-Total 104.4 % 80-120 16-MAR-21 Lead (Pb)-Total 101.4 % 80-120 16-MAR-21 Marganese (Mn)-Total 101.1 % 80-120 16-MAR-21 Make (N)-Total 100.1 % 80-120 16-MAR-21 Moxydemum (Mc)-Total 101.1 % 80-120 16-MAR-21 Nokek (N)-Total 100.5 % 80-120 16-MAR-21 Nokek (N)-Total 100.5 % 80-120 16-MAR-21 Rubidum (Rb)-Total 100.5 % 80-120 16-MAR-21	Contact:	Rachel Bo	urassa							
MET-T-CCMS-WT Water Batch R5401825 VG35062722 LC5 Cesium (Ca)-Total 104.9 % 80-120 16-MAR-21 Cobat (Ca)-Total 103.4 % 80-120 16-MAR-21 Copper (Cu)-Total 100.5 % 80-120 16-MAR-21 Lopage (Cu)-Total 104.4 % 80-120 16-MAR-21 Lead (Pb)-Total 104.4 % 80-120 16-MAR-21 Lead (Pb)-Total 104.4 % 80-120 16-MAR-21 Magnesium (Mg)-Total 103.7 % 80-120 16-MAR-21 Magnese (Mn)-Total 100.2 % 80-120 16-MAR-21 Molydenum (Mo)-Total 100.4 % 80-120 16-MAR-21 Molydenum (Mo)-Total 100.4 % 80-120 16-MAR-21 Molydenum (Mo)-Total 105.4 % 80-120 16-MAR-21 Store (G)-Total 106.4 % 80-120 16-MAR-21 Store (G)-Total 106.4	Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Rsoftexs Visional Sector	MET-T-CCMS	S-WT	Water							
W0350267-2 LCS Cesium (Cs)-Total 104.9 % 80-120 16-MAR-21 Copper (Cs)-Total 100.5 % 80-120 16-MAR-21 Iton (Fe)-Total 100.4 % 80-120 16-MAR-21 Iton (Fe)-Total 104.4 % 80-120 16-MAR-21 Lithium (Li)-Total 101.4 % 80-120 16-MAR-21 Magnesium (Mg)-Total 101.4 % 80-120 16-MAR-21 Manganese (Mn)-Total 101.1 % 80-120 16-MAR-21 Molydenum (Mg)-Total 100.7 % 80-120 16-MAR-21 Molydenum (Mg)-Total 100.9 % 80-120 16-MAR-21 Nickel (Ni)-Total 100.9 % 80-120 16-MAR-21 Prosphorus (P)-Total 106.4 % 80-120 16-MAR-21 Subici (Ni)-Total 106.1 % 80-120 16-MAR-21 Subici (Ni)-Total 106.1 % 80-120 16-MAR-21 Subici (Ni)-Total <	Batch	R5401825								
Cobalt (Co) Total 104.3 3 60-120 16-MAR-21 Copper (Cu)-Total 100.5 % 80-120 16-MAR-21 Iron (Fe)-Total 100.4 % 80-120 16-MAR-21 Lead (Pb)-Total 100.4 % 80-120 16-MAR-21 Lead (Pb)-Total 101.4 % 80-120 16-MAR-21 Magnesium (Mg)-Total 100.2 % 80-120 16-MAR-21 Magneses (Mn)-Total 100.4 % 80-120 16-MAR-21 Mongenesum (Mg)-Total 100.7 % 80-120 16-MAR-21 Mongenesum (Mg)-Total 100.9 % 80-120 16-MAR-21 Nickel (Ni)-Total 100.9 % 80-120 16-MAR-21 Prosphorus (P)-Total 100.4 % 80-120 16-MAR-21 Rubidium (Nb)-Total 105.1 % 80-120 16-MAR-21 Selenium (S)-Total 100.1 % 80-120 16-MAR-21 Silicon (Si)-Total 100.5 % 80-120 <	WG350267	72-2 LCS			104.9		%		90 120	16 MAD 21
Bound (b): Total Bound	Cobalt (C	o)-Total			104.9		%		80 120	16-MAR-21
books book book <thbook< th=""> book book <th< td=""><td>Copper (C</td><td>Cu)-Total</td><td></td><td></td><td>100.4</td><td></td><td>%</td><td></td><td>80-120</td><td>16-MAR-21</td></th<></thbook<>	Copper (C	Cu)-Total			100.4		%		80-120	16-MAR-21
Iber (b) Data Both	Iron (Fe)-	Total			104.4		%		80-120	16-MAR-21
Lithium (L)-Total 101.4 % 80.120 16-MAR-21 Magnesium (Mg)-Total 108.2 % 80.120 16-MAR-21 Manganese (Mn)-Total 103.7 % 80.120 16-MAR-21 Molybderum (Mo)-Total 101.1 % 80.120 16-MAR-21 Nickel (Ni)-Total 101.1 % 80.120 16-MAR-21 Nickel (Ni)-Total 100.9 % 80.120 16-MAR-21 Prosphorus (P)-Total 108.4 % 80.120 16-MAR-21 Potassium (K)-Total 105.4 % 80.120 16-MAR-21 Rubidium (Rb)-Total 105.1 % 80.120 16-MAR-21 Silver (Ag)-Total 101.1 % 80.120 16-MAR-21 Silver (Ag)-Total 102.8 % 80.120 16-MAR-21 Silver (Ag)-Total 102.8 % 80.120 16-MAR-21 Silver (Ag)-Total 102.7 % 80.120 16-MAR-21 Strontium (S)-Total 107.0 % 80.120	Lead (Pb)	-Total			104.9		%		80-120	16-MAR-21
Magnesium (Mg)-Total 108.2 % 80-120 16-MAR-21 Magnese (Mn)-Total 103.7 % 80-120 16-MAR-21 Molybdenum (Mg)-Total 101.1 % 80-120 16-MAR-21 Nickel (Ni)-Total 100.9 % 80-120 16-MAR-21 Phosphorus (P)-Total 105.4 % 80-120 16-MAR-21 Potassium (K)-Total 105.4 % 80-120 16-MAR-21 Subdium (Rb)-Total 105.4 % 80-120 16-MAR-21 Subdium (Rb)-Total 105.4 % 80-120 16-MAR-21 Subdium (Rb)-Total 101.1 % 80-120 16-MAR-21 Subdium (Rb)-Total 101.1 % 80-120 16-MAR-21 Subdium (Rb)-Total 102.8 % 80-120 16-MAR-21 Subdium (Sa)-Total 102.8 % 80-120 16-MAR-21 Subdium (Sa)-Total 102.7 % 80-120 16-MAR-21 Subdium (Sb)-Total 104.6 % 80-120	Lithium (L	.i)-Total			101.4		%		80-120	16-MAR-21
Organises (Mh)-Total 103.7 % 80.120 16.MAR-21 Molybdenum (Mo)-Total 101.1 % 80.120 16.MAR-21 Nickel (Ni)-Total 100.9 % 80.120 16.MAR-21 Phosphorus (P)-Total 108.4 % 70.130 16.MAR-21 Potassium (K)-Total 108.4 % 80.120 16.MAR-21 Rubidium (Rb)-Total 105.4 % 80.120 16.MAR-21 Selenium (Se)-Total 101.1 % 80.120 16.MAR-21 Selenium (Se)-Total 101.1 % 80.120 16.MAR-21 Silicon (Si)-Total 101.1 % 80.120 16.MAR-21 Silicon (Si)-Total 102.8 % 80.120 16.MAR-21 Sodium (Na)-Total 102.8 % 80.120 16.MAR-21 Sufur (S)-Total 101.5 % 80.120 16.MAR-21 Thallium (TI)-Total 102.7 % 80.120 16.MAR-21 Thorium (Th)-Total 102.7 % 80.120	Magnesiu	m (Mg)-Total			108.2		%		80-120	16-MAR-21
Notychenum (Mo)-Total 101.1 % 80-120 16-MAR-21 Nickel (Ni)-Total 100.9 % 80-120 16-MAR-21 Phosphorus (P)-Total 108.4 % 70-130 16-MAR-21 Potassium (K)-Total 105.4 % 80-120 16-MAR-21 Rubidium (Rb)-Total 105.4 % 80-120 16-MAR-21 Selenium (Se)-Total 101.1 % 80-120 16-MAR-21 Selenium (Se)-Total 101.1 % 80-120 16-MAR-21 Silicon (Si)-Total 105.4 % 80-120 16-MAR-21 Silicon (Si)-Total 102.8 % 80-120 16-MAR-21 Sodium (Na)-Total 102.8 % 80-120 16-MAR-21 Storntium (Sr)-Total 102.8 % 80-120 16-MAR-21 Sufur (S)-Total 101.5 % 80-120 16-MAR-21 Throinm (Th)-Total 102.7 % 80-120 16-MAR-21 Thorinm (Th)-Total 102.7 % 80-120	Manganes	se (Mn)-Total			103.7		%		80-120	16-MAR-21
Nickel (Ni)-Total 100.9 % 80.120 16-MAR-21 Phosphorus (P)-Total 108.4 % 70-130 16-MAR-21 Potassium (K)-Total 105.4 % 80-120 16-MAR-21 Rubidium (Rb)-Total 105.4 % 80-120 16-MAR-21 Selenium (Se)-Total 101.1 % 80-120 16-MAR-21 Selenium (Se)-Total 101.1 % 80-120 16-MAR-21 Silior (Ag)-Total 105.1 % 80-120 16-MAR-21 Solium (Na)-Total 106.1 % 80-120 16-MAR-21 Solium (Na)-Total 106.1 % 80-120 16-MAR-21 Suffur (S)-Total 106.1 % 80-120 16-MAR-21 Suffur (S)-Total 102.8 % 80-120 16-MAR-21 Suffur (S)-Total 102.8 % 80-120 16-MAR-21 Throtium (TI)-Total 102.7 % 80-120 16-MAR-21 Throtium (Th)-Total 107.0 % 80-120 <td< td=""><td>Molybden</td><td>um (Mo)-Total</td><td></td><td></td><td>101.1</td><td></td><td>%</td><td></td><td>80-120</td><td>16-MAR-21</td></td<>	Molybden	um (Mo)-Total			101.1		%		80-120	16-MAR-21
Phosphorus (P)-Total 108.4 % 70:130 16-MAR-21 Potassium (K)-Total 105.4 % 80:120 16-MAR-21 Rubidium (Rb)-Total 103.3 % 80:120 16-MAR-21 Selenium (Se)-Total 101.1 % 80:120 16-MAR-21 Silicon (Si)-Total 101.1 % 80:120 16-MAR-21 Silicon (Si)-Total 102.8 % 80:120 16-MAR-21 Solium (Na)-Total 102.8 % 80:120 16-MAR-21 Solium (Na)-Total 102.8 % 80:120 16-MAR-21 Strontium (Sr)-Total 102.8 % 80:120 16-MAR-21 Strontium (To)-Total 104.6 % 80:120 16-MAR-21 Theilum (Tr)-Total 107.0 % 80:120 16-MAR-21 Thorium (Th)-Total 102.7 % 80:120 16-MAR-21 Tin (Sn)-Total 102.5 % 80:120 16-MAR-21 Tin (Sn)-Total 102.5 % 80:120 <t< td=""><td>Nickel (Ni</td><td>)-Total</td><td></td><td></td><td>100.9</td><td></td><td>%</td><td></td><td>80-120</td><td>16-MAR-21</td></t<>	Nickel (Ni)-Total			100.9		%		80-120	16-MAR-21
Potassium (K)-Total 105.4 % 80-120 16-MAR-21 Rubidium (Rb)-Total 103.3 % 80-120 16-MAR-21 Selenium (Se)-Total 101.1 % 80-120 16-MAR-21 Silicon (Si)-Total 105.1 % 60-140 16-MAR-21 Silicon (Si)-Total 102.8 % 80-120 16-MAR-21 Sodium (Na)-Total 102.8 % 80-120 16-MAR-21 Storntium (Sr)-Total 102.8 % 80-120 16-MAR-21 Storntium (Sr)-Total 102.8 % 80-120 16-MAR-21 Sulfur (S)-Total 101.5 % 80-120 16-MAR-21 Sulfur (S)-Total 104.6 % 80-120 16-MAR-21 Thelium (Th)-Total 102.7 % 80-120 16-MAR-21 Tin (Sn)-Total 102.7 % 80-120 16-MAR-21 Tin (Sn)-Total 102.5 % 80-120 16-MAR-21 Uranium (Ti)-Total 102.5 % 80-120 16-	Phosphor	us (P)-Total			108.4		%		70-130	16-MAR-21
Rubidium (Rb)-Total 103.3 % 80-120 16-MAR-21 Selenium (Se)-Total 101.1 % 80-120 16-MAR-21 Silicon (Si)-Total 105.1 % 60-140 16-MAR-21 Silicon (Si)-Total 102.8 % 80-120 16-MAR-21 Sodium (Na)-Total 102.8 % 80-120 16-MAR-21 Strontium (Sr)-Total 102.8 % 80-120 16-MAR-21 Strontium (Sr)-Total 102.8 % 80-120 16-MAR-21 Strontium (Sr)-Total 101.5 % 80-120 16-MAR-21 Strontium (Tr)-Total 104.6 % 80-120 16-MAR-21 Thallium (Tl)-Total 107.0 % 80-120 16-MAR-21 Tin (Sn)-Total 102.7 % 80-120 16-MAR-21 Tinsinum (Tl)-Total 102.5 % 80-120 16-MAR-21 Turgsten (W)-Total 102.5 % 80-120 16-MAR-21 Vanadium (V)-Total 109.6 % 80-120	Potassiun	n (K)-Total			105.4		%		80-120	16-MAR-21
Selenium (Se)-Total 101.1 % 80-120 16-MAR-21 Silicon (Si)-Total 105.1 % 60-140 16-MAR-21 Silver (Ag)-Total 102.8 % 80-120 16-MAR-21 Sodium (Na)-Total 106.1 % 80-120 16-MAR-21 Sodium (Na)-Total 102.8 % 80-120 16-MAR-21 Strontium (Sr)-Total 102.8 % 80-120 16-MAR-21 Sulfur (S)-Total 102.8 % 80-120 16-MAR-21 Sulfur (S)-Total 101.5 % 80-120 16-MAR-21 Thallium (TI)-Total 104.6 % 80-120 16-MAR-21 Thorium (Tb)-Total 95.7 % 80-120 16-MAR-21 Tin (Sn)-Total 102.7 % 80-120 16-MAR-21 Tin (Sn)-Total 102.7 % 80-120 16-MAR-21 Turgsten (W)-Total 102.5 % 80-120 16-MAR-21 Vanadium (V)-Total 105.5 % 80-120 16-MAR-21	Rubidium	(Rb)-Total			103.3		%		80-120	16-MAR-21
Silicon (Si)-Total 105.1 % 60-140 16-MAR-21 Silver (Ag)-Total 102.8 % 80-120 16-MAR-21 Sodium (Na)-Total 106.1 % 80-120 16-MAR-21 Stontium (Sr)-Total 102.8 % 80-120 16-MAR-21 Suffur (S)-Total 102.8 % 80-120 16-MAR-21 Suffur (S)-Total 101.5 % 80-120 16-MAR-21 Thallium (TI)-Total 104.6 % 80-120 16-MAR-21 Tellurium (Te)-Total 95.7 % 80-120 16-MAR-21 Thorium (Th)-Total 107.0 % 80-120 16-MAR-21 Tin (Sn)-Total 102.7 % 80-120 16-MAR-21 Tungsten (W)-Total 102.5 % 80-120 16-MAR-21 Uranium (U)-Total 109.6 80-120 16-MAR-21 Vanadium (V)-Total 105.5 % 80-120 16-MAR-21 Zirco (Zn)-Total 101.8 80-120 16-MAR-21 <td< td=""><td>Selenium</td><td>(Se)-Total</td><td></td><td></td><td>101.1</td><td></td><td>%</td><td></td><td>80-120</td><td>16-MAR-21</td></td<>	Selenium	(Se)-Total			101.1		%		80-120	16-MAR-21
Silver (Ag)-Total 102.8 % 80.120 16-MAR-21 Sodium (Na)-Total 106.1 % 80.120 16-MAR-21 Strontium (Sr)-Total 102,8 % 80.120 16-MAR-21 Sulfur (S)-Total 101,5 % 80.120 16-MAR-21 Sulfur (S)-Total 101,5 % 80.120 16-MAR-21 Thallium (TI)-Total 104.6 % 80.120 16-MAR-21 Thellurium (Te)-Total 95.7 % 80.120 16-MAR-21 Thorium (Th)-Total 102.7 % 80.120 16-MAR-21 Tin (Sn)-Total 102.7 % 80.120 16-MAR-21 Tungsten (W)-Total 102.5 % 80.120 16-MAR-21 Uranium (U)-Total 109.6 % 80.120 16-MAR-21 Uranium (V)-Total 109.6 % 80.120 16-MAR-21 Vanadium (V)-Total 105.5 % 80.120 16-MAR-21 Zirco (Zn)-Total 101.8 % 80.120 16-MAR	Silicon (Si	i)-Total			105.1		%		60-140	16-MAR-21
Sodium (Na)-Total 106.1 % 80-120 16-MAR-21 Strontum (Sr)-Total 102.8 % 80-120 16-MAR-21 Sulfur (S)-Total 101.5 % 80-120 16-MAR-21 Thallium (TI)-Total 104.6 % 80-120 16-MAR-21 Tellurium (Te)-Total 95.7 % 80-120 16-MAR-21 Thorium (Th)-Total 107.0 % 80-120 16-MAR-21 Tin (Sn)-Total 102.7 % 80-120 16-MAR-21 Titanium (Ti)-Total 98.2 % 80-120 16-MAR-21 Tungsten (W)-Total 102.5 % 80-120 16-MAR-21 Uranium (V)-Total 109.6 80-120 16-MAR-21 Vanadium (V)-Total 100.2 80-120 16-MAR-21 Zinc (Zn)-Total 100.2 % 80-120 16-MAR-21 Zirconium (Zr)-Total 100.2 % 80-120 16-MAR-21 Zirconium (Xl)-Total 100.2 % 80-120 16-MAR-21	Silver (Ag)-Total			102.8		%		80-120	16-MAR-21
Strontium (Sr)-Total 102.8 % 80-120 16-MAR-21 Sulfur (S)-Total 101.5 % 80-120 16-MAR-21 Thallium (TI)-Total 104.6 % 80-120 16-MAR-21 Tellurium (Te)-Total 95.7 % 80-120 16-MAR-21 Thorium (Th)-Total 107.0 % 80-120 16-MAR-21 Tin (Sn)-Total 102.7 % 80-120 16-MAR-21 Titanium (Ti)-Total 98.2 % 80-120 16-MAR-21 Tungsten (W)-Total 102.5 % 80-120 16-MAR-21 Uranium (U)-Total 109.6 % 80-120 16-MAR-21 Vanadium (V)-Total 105.5 % 80-120 16-MAR-21 Zinc (Zn)-Total 100.2 % 80-120 16-MAR-21 Vanadium (V)-Total 100.2 % 80-120 16-MAR-21 Vanadium (V)-Total 100.2 % 80-120 16-MAR-21 VG3502672-1 MB 80-120 16-MAR-21	Sodium (N	Na)-Total			106.1		%		80-120	16-MAR-21
Sulfur (S)-Total 101.5 % 80-120 16-MAR-21 Thallium (T)-Total 104.6 % 80-120 16-MAR-21 Tellurium (Te)-Total 95.7 % 80-120 16-MAR-21 Thorium (Th)-Total 107.0 % 80-120 16-MAR-21 Tin (Sn)-Total 102.7 % 80-120 16-MAR-21 Titanium (T)-Total 98.2 % 80-120 16-MAR-21 Tungsten (W)-Total 102.5 % 80-120 16-MAR-21 Uranium (U)-Total 109.6 80-120 16-MAR-21 Vanadium (V)-Total 105.5 % 80-120 16-MAR-21 Zinc (Zn)-Total 101.8 % 80-120 16-MAR-21 Zinc (Zn)-Total 100.2 % 80-120 16-MAR-21 WG3502672-1 MB 80-120 16-MAR-21 Aluminum (Al)-Total <0.0050	Strontium	(Sr)-Total			102.8	•	%		80-120	16-MAR-21
Thallium (Tl)-Total 104.6 % 80-120 16-MAR-21 Tellurium (Te)-Total 95.7 % 80-120 16-MAR-21 Thorium (Th)-Total 107.0 % 80-120 16-MAR-21 Tin (Sn)-Total 102.7 % 80-120 16-MAR-21 Titanium (Ti)-Total 98.2 % 80-120 16-MAR-21 Tungsten (W)-Total 102.5 % 80-120 16-MAR-21 Uranium (U)-Total 109.6 % 80-120 16-MAR-21 Vanadium (V)-Total 105.5 % 80-120 16-MAR-21 Zinc (Zn)-Total 101.8 % 80-120 16-MAR-21 Zirconium (Zr)-Total 100.2 % 80-120 16-MAR-21 Vanadium (N)-Total 00.02 % 80-120 16-MAR-21 Vanadium (X)-Total 101.8 % 80-120 16-MAR-21 Vanadium (X)-Total 0.0050 mg/L 0.005 16-MAR-21 Aluminum (A)-Total <0.00010	Sulfur (S)	-Total			101.5		%		80-120	16-MAR-21
Tellurium (Te)-Total 95.7 % 80-120 16-MAR-21 Thorium (Th)-Total 107.0 % 80-120 16-MAR-21 Tin (Sn)-Total 102.7 % 80-120 16-MAR-21 Titanium (Ti)-Total 98.2 % 80-120 16-MAR-21 Tungsten (W)-Total 102.5 % 80-120 16-MAR-21 Uranium (U)-Total 109.6 % 80-120 16-MAR-21 Vanadium (V)-Total 105.5 % 80-120 16-MAR-21 Zinc (Zn)-Total 101.8 % 80-120 16-MAR-21 WG3502672-1 MB % 80-120 16-MAR-21 Aluminum (Al)-Total 100.2 % 80-120 16-MAR-21 VG3502672-1 MB % 80-120 16-MAR-21 Aluminum (Al)-Total <0.0050	Thallium ((TI)-Total			104.6		%		80-120	16-MAR-21
Thorium (Th)-Total 107.0 % 80-120 16-MAR-21 Tin (Sn)-Total 102.7 % 80-120 16-MAR-21 Titanium (Ti)-Total 98.2 % 80-120 16-MAR-21 Tungsten (W)-Total 102.5 % 80-120 16-MAR-21 Uranium (U)-Total 109.6 % 80-120 16-MAR-21 Vanadium (V)-Total 105.5 % 80-120 16-MAR-21 Zinc (Zn)-Total 101.8 % 80-120 16-MAR-21 Zirconium (Zr)-Total 100.2 % 80-120 16-MAR-21 WG3502672-1 MB % 80-120 16-MAR-21 Aluminum (A)-Total 0.0050 mg/L 0.005 16-MAR-21 Antimony (Sb)-Total <0.00010	Tellurium	(Te)-Total			95.7		%		80-120	16-MAR-21
Tin (Sn)-Total102.7%80-12016-MAR-21Titanium (Ti)-Total98.2%80-12016-MAR-21Tungsten (W)-Total102.5%80-12016-MAR-21Uranium (U)-Total109.6%80-12016-MAR-21Vanadium (V)-Total105.5%80-12016-MAR-21Zinc (Zn)-Total101.8%80-12016-MAR-21Zirconium (Zr)-Total100.2%80-12016-MAR-21MG3502672-1MBNg/L0.00516-MAR-21Antimony (Sb)-Total<0.00010	Thorium (Th)-Total			107.0		%		80-120	16-MAR-21
Titanium (Ti)-Total98.2%80-12016-MAR-21Tungsten (W)-Total102.5%80-12016-MAR-21Uranium (U)-Total109.6%80-12016-MAR-21Vanadium (V)-Total105.5%80-12016-MAR-21Zinc (Zn)-Total101.8%80-12016-MAR-21Zirconium (Zr)-Total100.2%80-12016-MAR-21WG3502672-1MBAluminum (Al)-Total<0.0050	Tin (Sn)-T	Total			102.7		%		80-120	16-MAR-21
Tungsten (W)-Total 102.5 % 80-120 16-MAR-21 Uranium (U)-Total 109.6 % 80-120 16-MAR-21 Vanadium (V)-Total 105.5 % 80-120 16-MAR-21 Zinc (Zn)-Total 101.8 % 80-120 16-MAR-21 Zirconium (Zr)-Total 100.2 % 80-120 16-MAR-21 WG3502672-1 MB % 80-120 16-MAR-21 Aluminum (Al)-Total <0.0050	Titanium ((Ti)-Total			98.2		%		80-120	16-MAR-21
Uranium (U)-Total 109.6 % 80-120 16-MAR-21 Vanadium (V)-Total 105.5 % 80-120 16-MAR-21 Zinc (Zn)-Total 101.8 % 80-120 16-MAR-21 Zirconium (Zr)-Total 100.2 % 80-120 16-MAR-21 WG3502672-1 MB % 80-120 16-MAR-21 Aluminum (Al)-Total <0.0050	Tungsten	(W)-Total			102.5		%		80-120	16-MAR-21
Vanadium (V)-Total 105.5 % 80-120 16-MAR-21 Zinc (Zn)-Total 101.8 % 80-120 16-MAR-21 Zirconium (Zr)-Total 100.2 % 80-120 16-MAR-21 WG3502672-1 MB 16-MAR-21 Aluminum (Al)-Total <0.0050	Uranium ((U)-Total			109.6		%		80-120	16-MAR-21
Zinc (Zn)-Total 101.8 % 80-120 16-MAR-21 Zirconium (Zr)-Total 100.2 % 80-120 16-MAR-21 WG3502672-1 MB Aluminum (Al)-Total <0.0050 mg/L 0.005 16-MAR-21 Antimony (Sb)-Total <0.00010 mg/L 0.0001 16-MAR-21 Arsenic (As)-Total <0.00010 mg/L 0.0001 16-MAR-21 Barium (Ba)-Total <0.00010 mg/L 0.0001 16-MAR-21	Vanadium	n (V)-Total			105.5		%		80-120	16-MAR-21
Zirconium (Zr)-Total 100.2 % 80-120 16-MAR-21 WG3502672-1 MB	Zinc (Zn)-	Total			101.8		%		80-120	16-MAR-21
WG3502672-1 MB Aluminum (Al)-Total <0.0050	Zirconium	(Zr)-Total			100.2		%		80-120	16-MAR-21
Antimony (Sb)-Total <0.00010 mg/L 0.0001 16-MAR-21 Arsenic (As)-Total <0.00010	WG350267 Aluminum	72-1 MB n (Al)-Total			<0.0050		mg/L		0.005	16-MAR-21
Arsenic (As)-Total <0.00010 mg/L 0.0001 16-MAR-21 Barium (Ba)-Total <0.00010	Antimonv	(Sb)-Total			<0.00010)	mg/L		0.0001	16-MAR-21
Barium (Ba)-Total <0.00010 mg/L 0.0001 16-MAR-21	Arsenic (A	As)-Total			<0.00010)	ma/L		0.0001	16-MAR-21
	Barium (B	Ba)-Total			<0.00010)	mg/L		0.0001	16-MAR-21

		Workorder	L256685	5	Report Date: 15	5-APR-21		Page 11 of 17
Client:	Thurber Engineering 2010 Winston Park D Oakville ON L6H 5R	Ltd. (Oakville) rive Unit 103 7						
				0 110				
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS	-WT Water							
Batch	R5401825							
WG350267 Bervllium (′ 2-1 MB (Be)-Total		<0.00010)	ma/l		0.0001	16-MAR-21
Bismuth (E	Bi)-Total		<0.00005	50	ma/L		0.00005	16-MAR-21
Boron (B)-	Total		<0.010		mg/L		0.01	16-MAR-21
Cadmium	(Cd)-Total		<0.00000)5(mg/L		0.000005	16-MAR-21
Calcium (Ca)-Total		< 0.050		mg/L		0.05	16-MAR-21
Chromium	(Cr)-Total		< 0.00050)	ma/L		0.0005	16-MAR-21
Cesium (C	s)-Total		<0.00001	0	mg/L		0.00001	16-MAR-21
Cobalt (Co	b)-Total		<0.00010)	mg/L		0.0001	16-MAR-21
Copper (C	u)-Total		<0.00050)	mg/L		0.0005	16-MAR-21
Iron (Fe)-1	Total		<0.010		mg/L		0.01	16-MAR-21
Lead (Pb)	Total		<0.00005	50	mg/L		0.00005	16-MAR-21
Lithium (Li	i)-Total		<0.0010		mg/L		0.001	16-MAR-21
Magnesiur	m (Mg)-Total		<0.0050		mg/L		0.005	16-MAR-21
Manganes	e (Mn)-Total		<0.00050		mg/L		0.0005	16-MAR-21
Molybdenu	um (Mo)-Total		<0.00005	50	mg/L		0.00005	16-MAR-21
Nickel (Ni)	-Total		<0.00050)	mg/L		0.0005	16-MAR-21
Phosphoru	us (P)-Total		<0.050		mg/L		0.05	16-MAR-21
Potassium	ı (K)-Total		<0.050		mg/L		0.05	16-MAR-21
Rubidium	(Rb)-Total		<0.00020)	mg/L		0.0002	16-MAR-21
Selenium	(Se)-Total		<0.00005	50	mg/L		0.00005	16-MAR-21
Silicon (Si)-Total		<0.10		mg/L		0.1	16-MAR-21
Silver (Ag)	-Total		<0.00005	50	mg/L		0.00005	16-MAR-21
Sodium (N	la)-Total		<0.050		mg/L		0.05	16-MAR-21
Strontium	(Sr)-Total		<0.0010		mg/L		0.001	16-MAR-21
Sulfur (S)-	Total		<0.50		mg/L		0.5	16-MAR-21
Thallium (TI)-Total		<0.00001	0	mg/L		0.00001	16-MAR-21
Tellurium	(Te)-Total		<0.00020)	mg/L		0.0002	16-MAR-21
Thorium (Th)-Total		<0.00010)	mg/L		0.0001	16-MAR-21
Tin (Sn)-T	otal		<0.00010)	mg/L		0.0001	16-MAR-21
Titanium (Ti)-Total		<0.00030)	mg/L		0.0003	16-MAR-21
Tungsten	(W)-Total		<0.00010)	mg/L		0.0001	16-MAR-21
Uranium (U)-Total		<0.00001	0	mg/L		0.00001	16-MAR-21
Vanadium	(V)-Total		<0.00050)	mg/L		0.0005	16-MAR-21

			Workorder:	L2566855	5	Report Date:	15-APR-21		Page 12 of 17
Client:	Thurber E 2010 Win	Engineering Ltd. (ston Park Drive	(Oakville) Unit 103						
Contact:	Rachel B	ON L6H 5R7 ourassa							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-	wt	Water							
Batch WG3502672 Zinc (Zn)-T	R5401825 2-1 MB ^T otal			<0.0030		ma/L		0.003	16-MAR-21
Zirconium	(Zr)-Total			<0.00020		mg/L		0.0002	16-MAR-21
WG3502672 Aluminum	2-5 MS (Al)-Total		WG3502672-3	101.0		%		70-130	16-MAR-21
Antimony (Sb)-Total			106.4		%		70-130	16-MAR-21
Arsenic (As	s)-Total			101.5		%		70-130	16-MAR-21
Barium (Ba	a)-Total			N/A	MS-B	%		-	16-MAR-21
Beryllium (I	Be)-Total			104.0	•	%		70-130	16-MAR-21
Bismuth (B	i)-Total			97.7		%		70-130	16-MAR-21
Boron (B)-	Total			92.7		%		70-130	16-MAR-21
Cadmium ((Cd)-Total			98.9		%		70-130	16-MAR-21
Calcium (C	a)-Total			N/A	MS-B	%		-	16-MAR-21
Chromium	(Cr)-Total			101.6		%		70-130	16-MAR-21
Cesium (C	s)-Total			104.7		%		70-130	16-MAR-21
Cobalt (Co)-Total			100.6		%		70-130	16-MAR-21
Copper (Cu	u)-Total			97.0		%		70-130	16-MAR-21
Iron (Fe)-T	otal			N/A	MS-B	%		-	16-MAR-21
Lead (Pb)-	Total			98.8	·	%		70-130	16-MAR-21
Lithium (Li))-Total			N/A	MS-B	%		-	16-MAR-21
Magnesium	n (Mg)-Total			N/A	MS-B	%		-	16-MAR-21
Manganese	e (Mn)-Total			N/A	MS-B	%		-	16-MAR-21
Molybdenu	m (Mo)-Total			105.1		%		70-130	16-MAR-21
Phosphoru	s (P)-Total			111.3		%		70-130	16-MAR-21
Potassium	(K)-Total			N/A	MS-B	%		-	16-MAR-21
Rubidium (Rb)-Total			100.3		%		70-130	16-MAR-21
Selenium (Se)-Total			99.8		%		70-130	16-MAR-21
Silicon (Si)	-Total			N/A	MS-B	%		-	16-MAR-21
Silver (Ag)-	-Total			99.4		%		70-130	16-MAR-21
Sodium (Na	a)-Total			N/A	MS-B	%		-	16-MAR-21
Strontium ((Sr)-Total			N/A	MS-B	%		-	16-MAR-21
Sulfur (S)-1	Total			N/A	MS-B	%		-	16-MAR-21
Thallium (T	I)-Total			98.1		%		70-130	16-MAR-21
Tellurium (Te)-Total			87.2		%		70-130	16-MAR-21
Thorium (T	h)-Total			102.4		%		70-130	16-MAR-21

			Workorder:	L256685	5 R	Report Date: 1	5-APR-21		Page 13 of 17
Client:	Thurber E 2010 Win Oakville	Engineering Ltd. ston Park Drive ON L6H 5R7	(Oakville) Unit 103						
Contact:	Rachel B	ourassa							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-	wт	Water							
Batch	R5401825								
WG350267 Tin (Sn)-To	2-5 MS otal		WG3502672-3	102.0		%		70-130	16-MAR-21
Titanium (1	i)-Total			103.1		%		70-130	16-MAR-21
Tungsten (W)-Total			99.9		%		70-130	16-MAR-21
Uranium (L	J)-Total			N/A	MS-B	%		-	16-MAR-21
Vanadium	(V)-Total			110.8		%		70-130	16-MAR-21
Zinc (Zn)-T	otal			101.2		%		70-130	16-MAR-21
Zirconium	Zr)-Total			101.0		%		70-130	16-MAR-21
NH3-F-WT		Water							
Batch	R5406856								
WG350478 Ammonia,	3-3 DUP Total (as N)		WG3504783-5 <0.010	<0.010	RPD-NA	mg/L	N/A	20	19-MAR-21
WG350478	3-2 LCS Total (as N)			100 5		%		85-115	10-MAR-21
WG350478	3-1 MB			100.0		<i>,</i> ,		05-115	19-101412-21
Ammonia,	Total (as N)			<0.010		mg/L		0.01	19-MAR-21
WG350478 Ammonia,	3-4 MS Total (as N)		WG3504783-5	98.6		%		75-125	19-MAR-21
NO2-IC-WT		Water							
Batch	R5403000								
WG3503957	7-4 DUP		WG3503957-3						
Nitrite (as N	۷)		<0.010	<0.010	RPD-NA	mg/L	N/A	20	17-MAR-21
WG350395 Nitrite (as N	7-2 LCS ∖)			99.5		%		90-110	17-MAR-21
WG350395 Nitrite (as N	7-1 MB			<0.010		ma/l		0.01	17-MAR-21
WG350395	7-5 MS		WG3503957-3						17 10/00 21
Nitrite (as N	N)		W00000007-0	98.1		%		75-125	17-MAR-21
NO3-IC-WT		Water							
Batch	R5403000								
WG350395 Nitrate (as	7-4 DUP N)		WG3503957-3 0.865	0.866		mg/L	0.2	20	17-MAR-21
WG350395 Nitrate (as	7-2 LCS N)			99.4		%		90-110	17-MAR-21
WG350395	7-1 MB							-	
Nitrate (as	N)			<0.020		mg/L		0.02	17-MAR-21
WG3503957	7-5 MS		WG3503957-3						

		Workorder:	L256685	5 F	Report Date: 15	5-APR-21		Page 14 of 17
Client: 1	Thurber Engineering Ltd 2010 Winston Park Driv Dakville ON L6H 5R7	d. (Oakville) ve Unit 103						
	Rachel Bourassa							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO3-IC-WT	Water							
Batch R5	5403000							
WG3503957-5 Nitrate (as N)	MS	WG3503957-3	97.3		%		75-125	17-MAR-21
P-T-COL-WT	Water							
Batch R5	5407361							
WG3505159-3 Phosphorus, To	DUP otal	L2567022-1 0.0316	0.0319		mg/L	1.2	20	22-MAR-21
WG3505159-2	LCS						_0	
Phosphorus, To	otal		98.0		%		80-120	22-MAR-21
WG3505159-1 Phosphorus, To	MB otal		<0.0030		mg/L		0.003	22-MAR-21
WG3505159-4 Phosphorus, To	MS otal	L2567022-1	92.3		%		70-130	22-MAR-21
PH-WT	Water				~			
Batch R5	5401759							
WG3502803-4 рН	DUP	WG3502803-3 8.22	8.26	J	pH units	0.04	0.2	16-MAR-21
WG3502803-2 рН	LCS		7.00		pH units		6.9-7.1	16-MAR-21
PO4-DO-COL-WT	Water							
Batch R5	5402904							
WG3504192-3 Orthophosphate	DUP e-Dissolved (as P)	L2566427-1 0.0287	0.0295		mg/L	2.8	20	18-MAR-21
WG3504192-2 Orthophosphate	LCS e-Dissolved (as P)		92.8		%		80-120	18-MAR-21
WG3504192-1 Orthophosphate	MB e-Dissolved (as P)		<0.0030		mg/L		0.003	18-MAR-21
WG3504192-4 Orthophosphate	MS e-Dissolved (as P)	L2566427-1	N/A	MS-B	%		_	18-MAR-21
SO4-IC-N-WT	Water				,.			
Batch R	5403000							
WG3503957-4 Sulfate (SO4)	DUP	WG3503957-3 1.47	1.48		mg/L	0.1	20	17-MAR-21
WG3503957-2 Sulfate (SO4)	LCS		100.6		%		90-110	17-MAR-21
WG3503957-1 Sulfate (SO4)	МВ		<0.30		mg/L		0.3	17-MAR-21

		Workorder:	L256685	5 I	Report Date: 1	5-APR-21		Page 15 of 17
Client: Thurber E 2010 Win Oakville	Engineering Ltd. Iston Park Drive ON L6H 5R7	(Oakville) Unit 103						
Contact: Rachel B	ourassa							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SO4-IC-N-WT	Water							
Batch R5403000								
WG3503957-5 MS Sulfate (SO4)		WG3503957-3	99.0		%		75-125	17-MAR-21
SOLIDS-TDS-WT	Water							
Batch R5407798								
WG3505168-3 DUP		L2566855-1						
Total Dissolved Solids		506	528		mg/L	4.3	20	19-MAR-21
WG3505168-2 LCS Total Dissolved Solids			92.3		%		85-115	19-MAR-21
WG3505168-1 MB								
Total Dissolved Solids			<10		mg/L		10	19-MAR-21
SOLIDS-TSS-WT	Water							
Batch R5408260								
WG3505171-3 DUP		L2566855-1						
Total Suspended Solids		140	163		mg/L	15	20	20-MAR-21
WG3505171-2 LCS Total Suspended Solids			103.5		%		85-115	20-MAR-21
WG3505171-1 MB								
Total Suspended Solids			<3.0		mg/L		3	20-MAR-21
TOC-WT	Water							
Batch R5406780								
WG3505015-3 DUP		WG3505015-5	10.4					
Total Organic Carbon		11.9	12.4		mg/∟	3.9	20	19-MAR-21
WG3505015-2 LCS Total Organic Carbon			99.4		%		80-120	10-MAR-21
WG3505015-1 MB							00 120	
Total Organic Carbon			<0.50		mg/L		0.5	19-MAR-21
WG3505015-4 MS		WG3505015-5						
Total Organic Carbon			N/A	MS-B	%		-	19-MAR-21
TURBIDITY-WT	Water							
Batch R5401905								
WG3502964-3 DUP Turbidity		L2566851-17 33.5	33.0		NTU	1.5	15	16-MAR-21
WG3502964-2 LCS								
			99.97		%		85-115	16-MAR-21
vvG3502964-1 MB Turbidity			<0.10		NTU		0.1	16-MAR-21

Workorder: L2566855

Report Date: 15-APR-21

Client:	Thurber Engineering Ltd. (Oakville)
	2010 Winston Park Drive Unit 103
	Oakville ON L6H 5R7
Contact:	Rachel Bourassa

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
В	Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2566855

Report Date: 15-APR-21

Client:	Thurber Engineering Ltd. (Oakville)
	2010 Winston Park Drive Unit 103
	Oakville ON L6H 5R7
Contact:	Rachel Bourassa

Page 17 of 17

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
Colour							
	1	12-MAR-21 14:00	15-MAR-21 20:00	48	78	hours	EHTR
	2	12-MAR-21 13:00	15-MAR-21 20:00	48	79	hours	EHTR
Turbidity							
	1	12-MAR-21 14:00	16-MAR-21 15:15	48	97	hours	EHTR
	2	12-MAR-21 13:00	16-MAR-21 15:15	48	98	hours	EHTR

Legend & Qualifier Definitions:

EHTR-FM:	Exceeded ALS recommended hold time prior to sample re	eceipt. Field Measurement recommended.
EHTR:	Exceeded ALS recommended hold time prior to sample re	eceipt.
EHTL:	Exceeded ALS recommended hold time prior to analysis.	Sample was received less than 24 hours prior to expiry.
EHT:	Exceeded ALS recommended hold time prior to analysis.	
Rec. HT:	ALS recommended hold time (see units).	

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2566855 were received on 15-MAR-21 15:30.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

COC Number: 20 -

Page \

of

(

Report To	Contact and company name below will ap	pear on the final report	T	Reports /	Recipients				Tu	rnaro	und Ti	ime (T	AT) R	eques	ted								
Company:	Thurber Engineering Ltd.		Select Report F	ormat: 🗹 PDF	EXCEL E	DD (DIGITAL)		outine (R)	if rece	eived b	v 3pm	M-F -		harges	anniv		\neg						
Contact:	Rachel Bourassa		Merge QC/QCI	Reports with COA		0 🗌 N/A	F ₄	day [P4] i	f recei	ived by	/ 3pm	M-F - 2	20% ru	sh surch	narge mi	inimum							
Phone:	905-829-8666	-	Compare Resu	ults to Criteria on Report	t - provide details bel	ow if box checked	3	day (P3)	if rece	eived b	y 3pm	M-F -	25% ru	ush surc	harge m	ninimum		AFF	IX ALS	BARCO	DE LA	BEL H	ÉRE
	Company address below will appear on the fi	nal report	Select Distributi	ion: 🗹 Email	🗌 MAIL 🗌	FAX		day (P2)	if rece	eived b	y 3pm	M-F -	50% ru	Ish surc	harge m	ninimum			((ALS us	e only}		
Street:	2010 Winston Park Drive, Suite 103		Email 1 or Fax	rbourassa@thurb	er.ca		- Sa	me day [E]	2] if i	receive	so by 1	Dam M	1-S - 20	ish surc 20% rus	harge m ih surcha	arge. Ac	dition	1					
City/Province:	Oakville, Ontario		Email 2				rou	es may ap utine tests	ply to	rush re	esuests	on we	ekends,	, statuto	ry holidi	ays and	non-						
Postal Code:	L6H 5R7		Email 3					Date and	Time	Requi	ired for	all E8		s:			10	E. 14	.				
Invoice To	Same as Report To			Invoice R	ecipients				i	For test	ts that c	an not	be perfe	ormed a	cording	to the 1	AT requ	uested, y	you will t	be contact	æd.		
	Copy of Invoice with Report YES	NO NO	Select Invoice	Distribution: 🔽 El	MAIL 🗌 MAIL [FAX		-						Апа	alysis	Requ	est				·		
Company:	Thurber Engineering Ltd.		Email 1 or Fax	accountingON@t	hurber.ca		8		In	dicate	Filtere	d (F), F	reserve	ed (P) a	r Filtere	d and F	reserve	ed (F/P) below		Т	Te	6
Contact:			Email 2]嵐															Ĩ	e l
	Project Information	- ,	Oil	and Gas Require	d Fields (client	use)	1		_			~		-									l ě
ALS Account #	7 Quote #: 25053 / Q84200	·····	AFE/Cost Center:		PO#		15	2	<u>B</u>			IE S									17	L R	Š
	+26	<u> </u>	Major/Minor Code:		Routing Code:		1 <u>ö</u>	4ISC	SSA			RDN		¥							1오	U U	8
PO/AFE:			Requisitioner:	·				04/8	ST	rs		3/HA		IAP-			ν				z	18	
LSD:		<u> </u>	Location:				ō	ZIN	Ĕ	ЕТА		NZN.	1	N-W			ETA					STC	ÌÌ
ALS Lab Wor	k Order # (lab use only):	66855	ALS Contact:	Amanda Overholster	Sampler:		BER	/CL/F/N	RVEC/P	BAL/M	лос	SILICAN		4+STOF			VED MI				LE LE	DED	CTE
ALS Sample #	Sample Identification	n and/or Coordinates		Date	Time		15	RBR	3	NOI	NH3	ő		SAN			SOL				Σ	Ē	SP
(lab use only)	(This description will	appear on the report)		(dd-mmm-yy)	(ħh:mm)	oginhie i the	ĪŽ	- F	8	Ю́н Н	TP/	CAI		Ż		TSS	SIO				S	Ш	S
	BH06	<u>. </u>		12-Mar-21	14:00	GW	21	R	R	R	R	R	[R		R	R						
	BH04D			12-Mar-21	13:00	GW	21	R	R	R	R	R		R		R	R				\top	1	
																			-		1		
							1												+		+	1	
									+												+	+	┢──
									-+							-			+		+	-	┢
	· · · · · · · · · · · · · · · · · · ·			· · ·				┠──┼─	\rightarrow							-+			+	+	+		
							+														+	–	┢──
	· · · · · · · · · · · · · · · · · · ·					+		┝──┼┈		_					-				\rightarrow	\rightarrow		_	<u> </u>
		· · · · · ·						-	_										\rightarrow			1	┢
Drinking	Water (DW) Samples ¹ (client use)	Notes / Specify	Limits for result e	valuation by selecti	ng from drop-dow	vn below						SAM	PLE R	RECEI	PT DE	TAILS	s (lab	US9 C	inly)				·
Are samples tak	en from a Regulated DW System?		(Ex	cel COC only)			Cooli	ing Meth	nod:		NONE		ICE	X I	je pack	s 🗌	FRO	ZÉN		0000	NG INIT	TATED	
		PWQO,	Napanee	: Storm	+Sanita	ry	Subn	nission (Com	ments	s iden	tified	on Sa	imple	Receip	ot Noti	ficatio	n:		<u>s [</u>	<u>]</u> NO		
Are samples for	human consumption/use2					1	Coole	er Custo	dy S	eals	Intact:			5 🗌 M	I/A 5	Sampl	e Cus	tody S	Seals I	ntact:	<u> </u>	ES 📋	N/A
							 		IAL C	JOOLE	RTEM	PERAT	URES	°C		<u> </u>	FIN	VAL CO	OLER 1	EMPER	ATURES	;*C T	
	SHIPMENT RELEASE (client use		· · · · ·		T PECEPTION #	ah usa anta								01		2.1	-		<u>14</u>			<u> </u>	
Released by:	Date:	Time:	Received by:		Date:	an use only)	Time		Recei	ived h		F	A	SHIP	Date	KECI	:P110	n (ial	o use (oniy)	Tim	<u></u>	
Kach	el Bourassa 3/15/2	021 12:00						ľ				(ČIJ/		3/1	5b	1				17	3/1	
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLIN	G INFORMATION		WHI	TE - LABORATOR	Y COPY YEL	LOW -	CLIENT	COP	Y			<u>خالبد</u>		<u></u>		<u> </u>					A5G 2	020 FRON

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Thurber Engineering Ltd. (Oakville) ATTN: Rachel Bourassa 2010 Winston Park Drive Unit 103 Oakville ON L6H 5R7 Date Received:15-MAR-21Report Date:15-APR-21 13:53 (MT)Version:FINAL REV. 7

Client Phone: 905-829-8666

Certificate of Analysis

Lab Work Order #: L2566855 Project P.O. #: NOT SUBMITTED Job Reference: 30726 C of C Numbers: Legal Site Desc:

Comments: ADDITIONAL 23-MAR-21 08:39

AmindaOughold

Amanda Overholster Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Summary of Guideline Exceedances

Guideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit
Ontario Nap (No pa	panee Sanitary and Storm Sewer E rameter exceedances)	By-Law 2012-39 - Ontario Nap	oanee Sanitary Sewer Discharge Limits			
	Bulloo		Janee Storm Sewer Discharge Limitis			
L2566855-1	BH06	Total Metals	Manganese (Mn)-Total Phosphorus (P)-Total Zinc (Zn)-Total	0.554 0.85 0.097	0.05 0.3 0.04	mg/L mg/L mg/L
L2566855-2	BH04D	Total Metals	Manganese (Mn)-Total	0.0631	0.05	mg/L

L2566855 CONT'D.... Job Reference: 30726 PAGE 3 of 24 15-APR-21 13:53 (MT)

Physical Tests - WATER

	S	ampl San	Lab ID e Date ple ID	L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D
Analyte	G Unit	iuide #1	Limits #2		
рН	pH units	-	6.0-9.5	7.60	7.91
Total Suspended Solids	mg/L	350	-	140 DLHC	23.3

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 4 of 24 15-APR-21 13:53 (MT)

Anions and Nutrients - WATER

		Sampl Sam	Lab ID e Date ple ID	L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D
Analyte	Unit	Guide #1	Limits #2		
Fluoride (F)	mg/L	10	-	0.093	0.143
Total Kjeldahl Nitrogen	mg/L	100	-	0.340	0.150
Phosphorus, Total	mg/L	-	-	0.148	0.0111

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 5 of 24 15-APR-21 13:53 (MT)

Cyanides - WATER

		L Sample	ab ID Date	L2566855-1 12-MAR-21	L2566855-2 12-MAR-21
		Sam	ple ID	BH06	BH04D
		Guide	Limits		
Analyte	Unit	#1	#2		
Cyanide, Total	mg/L	2.0	0.02	<0.0020	<0.0020

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 6 of 24 15-APR-21 13:53 (MT)

Bacteriological Tests - WATER

	Lab II Sample Date Sample II	 L2566855-1 12-MAR-21 BH06 	L2566855-2 12-MAR-21 BH04D
	Guide Limit	S	
Analyte	Unit #1 #2		
E. Coli	CFU/100m L	0 PEHR	0 PEHR

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits

Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 7 of 24 15-APR-21 13:53 (MT)

Total Metals - WATER

		Sampl Sam	Lab ID e Date pple ID	L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D	
Analyte	Unit	Guide #1	Limits #2			
Aluminum (AI)-Total	mg/L	50	-	21.0 DLHC	0.0837	
Antimony (Sb)-Total	mg/L	5	-	<0.0010 ^{DLHC}	0.00022	
Arsenic (As)-Total	mg/L	1.0	0.02	0.0039 ^{DLHC}	0.00117	
Barium (Ba)-Total	mg/L	-	-	0.596 DLHC	0.214	
Beryllium (Be)-Total	mg/L	-	-	<0.0010 ^{DLHC}	<0.00010	
Bismuth (Bi)-Total	mg/L	-	-	<0.00050	<0.000050	
Boron (B)-Total	mg/L	-	-	<0.10 ^{DLHC}	0.040	
Cadmium (Cd)-Total	mg/L	0.7	0.008	0.000148	<0.000050	
Calcium (Ca)-Total	mg/L	-	-	183 DLHC	70.1	
Cesium (Cs)-Total	mg/L	-	-	0.00154	0.000013	
Chromium (Cr)-Total	mg/L	4	0.04	0.0316 ^{DLHC}	<0.00050	
Cobalt (Co)-Total	mg/L	5	-	0.0129 ^{DLHC}	0.00103	
Copper (Cu)-Total	mg/L	2	0.04	0.0353 ^{DLHC}	<0.00050	
Iron (Fe)-Total	mg/L	-	-	26.4 DLHC	0.086	
Lead (Pb)-Total	mg/L	1.0	0.12	0.0247 ^{DLHC}	0.000082	
Lithium (Li)-Total	mg/L	-	-	0.022 DLHC	0.0075	
Magnesium (Mg)-Total	mg/L	-	-	49.0 DLHC	45.0	
Manganese (Mn)-Total	mg/L	5	0.05	0.554 DLHC	0.0631	
Mercury (Hg)-Total	mg/L	0.01	0.0004	0.0000065	<0.0000050	
Molybdenum (Mo)-Total	mg/L	5	-	0.00056 ^{DLHC}	0.00316	
Nickel (Ni)-Total	mg/L	2	0.08	0.0287 ^{DLHC}	0.00173	
Phosphorus (P)-Total	mg/L	10	0.3	0.85 DLHC	<0.050	
Potassium (K)-Total	mg/L	-	-	8.15 DLHC	2.47	
Rubidium (Rb)-Total	mg/L	-	-	0.0373 ^{DLHC}	0.00172	
Selenium (Se)-Total	mg/L	1.0	0.02	<0.00050	0.000258	
Silicon (Si)-Total	mg/L	-	-	46.6 DLHC	11.0	
Silver (Ag)-Total	mg/L	5.0	0.12	<0.00050	<0.000050	
Sodium (Na)-Total	mg/L	-	-	36.3 DLHC	45.5	
Strontium (Sr)-Total	mg/L	-	-	0.496 DLHC	0.969	
Sulfur (S)-Total	mg/L	-	-	10.4 DLHC	22.1	

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

L2566855 CONT'D Job Reference: 30726 PAGE 8 of 24 15-APR-21 13:53 (MT)

Total Metals - WATER

		Sampl Sam	Lab ID e Date pple ID	L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D
Analyte	Unit	Guide #1	Limits #2		
Tellurium (Te)-Total	mg/L	-	-	<0.0020	<0.00020
Thallium (TI)-Total	mg/L	-	-	0.00031	0.000016
Thorium (Th)-Total	mg/L	-	-	0.0053 ^{DLHC}	<0.00010
Tin (Sn)-Total	mg/L	5.0	-	0.0011	0.00198
Titanium (Ti)-Total	mg/L	5.0	-	1.26 DLHC	0.00445
Tungsten (W)-Total	mg/L	-	-	<0.0010	<0.00010
Uranium (U)-Total	mg/L	-	-	0.00123	0.00221
Vanadium (V)-Total	mg/L	-	-	0.0438 ^{DLHC}	0.00136
Zinc (Zn)-Total	mg/L	2	0.04	0.097 DLHC	<0.0030
Zirconium (Zr)-Total	mg/L	-	-	<0.0020	<0.00020

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 9 of 24 15-APR-21 13:53 (MT)

Speciated Metals - WATER

		Sample Sam	Lab ID e Date ple ID	L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D
Analyte	Unit	Guide #1	Limits #2		
Chromium, Hexavalent	mg/L	2.0	0.08	<0.00050	<0.00050

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 10 of 24 15-APR-21 13:53 (MT)

Aggregate Organics - WATER

		L	_ab ID	L2566855-1	L2566855-2
		Sample	e Date	12-MAR-21	12-MAR-21
		Sam	ple ID	BH06	BH04D
		Guide	Limits		
Analyte	Unit	#1	#2		
BOD Carbonaceous	mg/L	-	-	<3.0 ^{BODL}	<3.0 ^{BODL}
COD	mg/L	800	40	15	<10
Oil and Grease, Total	mg/L	-	-	<5.0	<5.0
Animal/Veg Oil & Grease	mg/L	150	-	<5.0	<5.0
Mineral Oil and Grease	mg/L	15	-	<2.5	<2.5
Phenols (4AAP)	mg/L	1.0	0.008	<0.0010	<0.0010

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 11 of 24 15-APR-21 13:53 (MT)

Volatile Organic Compounds - WATER

		L Sample Sam	Lab ID e Date ple ID	L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D
Angleto	Unit	Guide #1	Limits #2		
Analyte		<i>H</i> I	"-	0.000	
Acetone	ug/L	-	-	<20	<20
Benzene	ug/L	10	2	<0.50	<0.50
Bromodichloromethane	ug/L	-	-	<1.0	<1.0
Bromoform	ug/L	-	-	<1.0	<1.0
Bromomethane	ug/L	-	-	<0.50 OWP	<0.50
Carbon Disulfide	ug/L	-	-	<1.0 ^{OWP}	<1.0
Carbon tetrachloride	ug/L	-	-	<0.20 ^{OWP}	<0.20
Chlorobenzene	ug/L	-	-	<0.50 ^{OWP}	<0.50
Dibromochloromethane	ug/L	-	-	<1.0 ^{OWP}	<1.0
Chloroethane	ug/L	-	-	<1.0 ^{OWP}	<1.0
Chloroform	ug/L	40	2	<1.0 ^{OWP}	<1.0
Chloromethane	ug/L	-	-	<1.0 ^{OWP}	<1.0
1,2-Dibromoethane	ug/L	-	-	<0.20 ^{OWP}	<0.20
1,2-Dichlorobenzene	ug/L	50	5.6	<0.50 ^{OWP}	<0.50
1,3-Dichlorobenzene	ug/L	-	-	<0.50 ^{OWP}	<0.50
1,4-Dichlorobenzene	ug/L	80	6.8	<0.50 OWP	<0.50
Dichlorodifluoromethane	ug/L	-	-	<1.0 OWP	<1.0
1,1-Dichloroethane	ug/L	-	-	<0.50 OWP	<0.50
1,2-Dichloroethane	ug/L	-		<0.50 ^{0WP}	<0.50
1,1-Dichloroethylene	ug/L	-	-	<0.50 ^{OWP}	<0.50
cis-1,2-Dichloroethylene	ug/L	4000	5.6	<0.50 OWP	<0.50
trans-1,2-Dichloroethylene	ug/L	-	-	<0.50 OWP	<0.50
Dichloromethane	ug/L	2000	5.2	<2.0 OWP	<2.0
1,2-Dichloropropane	ug/L	-	-	<0.50 ^{OWP}	<0.50
cis-1,3-Dichloropropene	ug/L	-	-	<0.30 ^{OWP}	<0.30
trans-1,3-Dichloropropene	ug/L	140	5.6	<0.30 ^{OWP}	<0.30
Ethylbenzene	ug/L	160	2	<0.50 ^{OWP}	<0.50
n-Hexane	ug/L	-	-	<0.50 ^{OWP}	<0.50
2-Hexanone	ug/L	-	-	<20 OWP	<20
Methyl Ethyl Ketone	ug/L	-	-	<20 OWP	<20
	-				

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

L2566855 CONT'D.... Job Reference: 30726 PAGE 12 of 24 15-APR-21 13:53 (MT)

Volatile Organic Compounds - WATER

		L	_ab ID	L2566855-1	L2566855-2
		Sample	e Date	12-MAR-21	12-MAR-21
		Sam	ple ID	BH06	BH04D
		Guide	l imits		
Analyte	Unit	#1	#2		
Methyl Isobutyl Ketone	ug/L	-	-	<20 OWP	<20
МТВЕ	ug/L	-	-	<0.50 ^{OWP}	<0.50
Styrene	ug/L	-	-	<0.50 ^{OWP}	<0.50
1,1,1,2-Tetrachloroethane	ug/L	-	-	<0.50 ^{OWP}	<0.50
1,1,2,2-Tetrachloroethane	ug/L	1400	-	<0.50 ^{OWP}	<0.50
Tetrachloroethylene	ug/L	1000	4.4	<0.50 ^{OWP}	<0.50
Toluene	ug/L	16	2	<0.40 ^{OWP}	<0.40
1,1,1-Trichloroethane	ug/L	-	-	<0.50 ^{OWP}	<0.50
1,1,2-Trichloroethane	ug/L	-	-	<0.50 ^{OWP}	<0.50
Trichloroethylene	ug/L	400	7.6	<0.50 ^{OWP}	<0.50
Trichlorofluoromethane	ug/L	-	-	<1.0 ^{OWP}	<1.0
Vinyl chloride	ug/L	-	-	<0.50 ^{OWP}	<0.50
o-Xylene	ug/L	-	-	<0.30 ^{OWP}	<0.30
m+p-Xylenes	ug/L	-	-	<0.40 ^{OWP}	<0.40
Xylenes (Total)	ug/L	1400	4.4	<0.50	<0.50
Surrogate: 4-Bromofluorobenzene	%	-	-	86.9	86.9
Surrogate: 1,4-Difluorobenzene	%	-	-	99.5	99.4

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits

Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 13 of 24 15-APR-21 13:53 (MT)

Polycyclic Aromatic Hydrocarbons - WATER

		Sample Sam	Lab ID e Date iple ID	L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D
Analyte	Unit	Guide #1	Limits #2		
Acenaphthene	ug/L	-	-	<0.020	<0.020
Acenaphthylene	ug/L	-	-	<0.020	<0.020
Anthracene	ug/L	-	-	<0.020	<0.020
Benzo(a)anthracene	ug/L	-	-	<0.020	<0.020
Benzo(a)pyrene	ug/L	-	-	<0.010	<0.010
Benzo(b&j)fluoranthene	ug/L	-	-	<0.020	<0.020
Benzo(g,h,i)perylene	ug/L	-	-	<0.020	<0.020
Benzo(k)fluoranthene	ug/L	-	-	<0.020	<0.020
Chrysene	ug/L	-	-	<0.020	<0.020
Dibenz(a,h)anthracene	ug/L	-	-	<0.020	<0.020
Fluoranthene	ug/L	-	-	<0.020	<0.020
Fluorene	ug/L	-	-	<0.020	<0.020
Indeno(1,2,3-cd)pyrene	ug/L	-	-	<0.020	<0.020
1+2-Methylnaphthalenes	ug/L	-	-	<0.028	<0.028
1-Methylnaphthalene	ug/L	-	-	<0.020	<0.020
2-Methylnaphthalene	ug/L	-	-	<0.020	<0.020
Naphthalene	ug/L	-	-	<0.050	<0.050
Phenanthrene	ug/L	-	-	<0.020	<0.020
Pyrene	ug/L	-		<0.020	<0.020
Surrogate: Chrysene d12	%	-	-	52.1	51.3
Surrogate: Naphthalene d8	%	-	-	69.0	63.0
Surrogate: Phenanthrene d10	%	-	-	64.1	60.9
Total PAHs	ug/L	5	2	<0.095	<0.095

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits

Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 14 of 24 15-APR-21 13:53 (MT)

Semi-Volatile Organics - WATER

			Lab ID	L2566855-1	L2566855-2
		Sampl	e Date	12-MAR-21	12-MAR-21
		San	nple ID	BH06	BH04D
		Guide	Limits		
Analyte	Unit	#1	#2		
Aldrin + Dieldrin	ug/L	0.2	0.08	<0.011	<0.011
3,3'-Dichlorobenzidine	ug/L	2	0.8	<0.40	<0.40
Di-n-butylphthalate	ug/L	80	15	<1.0	<1.0
Bis(2-ethylhexyl)phthalate	ug/L	12	8.8	<2.0	<2.0
Pentachlorophenol	ug/L	5	2	<0.50	<0.50
Surrogate: 2-Fluorobiphenyl	%	-	-	81.7	88.5
Surrogate: p-Terphenyl d14	%	-	-	98.9	100.2
Surrogate: 2,4,6-Tribromophenol	%	-	-	109.0	109.2

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 15 of 24 15-APR-21 13:53 (MT)

Polychlorinated Biphenyls - WATER

			Lab ID	L2566855-1	L2566855-2
		Sampl	e Date	12-MAR-21	12-MAR-21
		Sam	nple ID	BH06	BH04D
		Guide	Limits		
Analyte	Unit	#1	#2		
Aroclor 1242	ug/L	-	-	<0.020	<0.020
Aroclor 1248	ug/L	-	-	<0.020	<0.020
Aroclor 1254	ug/L	-	-	<0.020	<0.020
Aroclor 1260	ug/L	-	-	<0.020	<0.020
Surrogate: Decachlorobiphenyl	%	-	-	82.9	117.3
Total PCBs	ug/L	-	-	<0.040	<0.040
Surrogate: Tetrachloro-m-xylene	%	-	-	119.9	94.1

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 16 of 24 15-APR-21 13:53 (MT)

Organochlorine Pesticides - WATER

		l Sample Sam	Lab ID e Date ple ID	L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D	
Analyte	Unit	Guide #1	Limits #2			
Aldrin	ug/L	-	-	<0.0080	<0.0080	
alpha-BHC	ug/L	-	-	<0.0080	<0.0080	
beta-BHC	ug/L	-	-	<0.0080	<0.0080	
gamma-hexachlorocyclohexane	ug/L	-	-	<0.0080	<0.0080	
delta-BHC	ug/L	-	-	<0.0080	<0.0080	
a-chlordane	ug/L	-	-	<0.0080	<0.0080	
Chlordane (Total)	ug/L	100	40	<0.011	<0.011	
g-chlordane	ug/L	-	-	<0.0080	<0.0080	
o,p-DDD	ug/L	-	-	<0.0040	<0.0040	
pp-DDD	ug/L	-	-	<0.0040	<0.0040	
Total DDD	ug/L	-	-	<0.0057	<0.0057	
o,p-DDE	ug/L	-	-	<0.0040	<0.0040	
pp-DDE	ug/L	-	-	<0.0040	<0.0040	
Total DDE	ug/L	-	-	<0.0057	<0.0057	
op-DDT	ug/L	-	-	<0.0040	<0.0040	
pp-DDT	ug/L	-	-	<0.0040	<0.0040	
Total DDT	ug/L	-	-	<0.0057	<0.0057	
DDT+Metabolites	ug/L	0.1	0.04	<0.0098	<0.0098	
Dieldrin	ug/L	-		<0.0080	<0.0080	
Endosulfan I	ug/L	-	-	<0.0070	<0.0070	
Endosulfan II	ug/L	-	-	<0.0070	<0.0070	
Endosulfan Sulfate	ug/L	-	-	<0.0070	<0.0070	
Endrin	ug/L	-	-	< 0.025 ^{RRR}	<0.010	
Endrin Aldehyde	ug/L	-	-	<0.010	<0.010	
Heptachlor	ug/L	-	-	<0.0080	<0.0080	
Heptachlor Epoxide	ug/L	-	-	<0.0080	<0.0080	
Hexachlorobenzene	ug/L	0.1	0.04	<0.0080	<0.0080	
Hexachlorobutadiene	ug/L	-	-	<0.0080	<0.0080	
Hexachloroethane	ug/L	-	-	<0.0080	<0.0080	
Methoxychlor	ug/L	-	-	<0.0080	<0.0080	

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

L2566855 CONT'D.... Job Reference: 30726 PAGE 17 of 24 15-APR-21 13:53 (MT)

Organochlorine Pesticides - WATER

		l	_ab ID	L2566855-1	L2566855-2
		Sample	e Date	12-MAR-21	12-MAR-21
		Sam	ple ID	BH06	BH04D
Analyte	Unit	Guide #1	Limits #2		
Mirex	ug/L	100	40	<0.0080	<0.0080
trans-Nonachlor	ug/L	-	-	<0.010	<0.010
Oxychlordane	ug/L	-	-	<0.0080	<0.0080
Pentachloronitrobenzene	ug/L	-	-	<0.010	<0.010
Surrogate: Decachlorobiphenyl	%	-	-	70.0	125.5
Surrogate: Tetrachloro-m-xylene	%	-	-	88.9	87.0

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2566855 CONT'D.... Job Reference: 30726 PAGE 18 of 24 15-APR-21 13:53 (MT)

Organic Parameters - WATER

		L	ab ID	L2566855-1	L2566855-2
		Sample	e Date	12-MAR-21	12-MAR-21
		Sam	ple ID	BH06	BH04D
Analyte	Unit	Guide #1	Limits #2		
Nonvlphenol	ug/l		1	4.0	
	uy/L	-	1	<1.0	<1.0
Nonylphenol Diethoxylates	ug/L	-	-	<1.0 <0.10	<1.0 <0.10
Nonylphenol Diethoxylates Total Nonylphenol Ethoxylates	ug/L ug/L ug/L	- 200	- 10	<1.0 <0.10 <2.0	<1.0 <0.10 <2.0

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Reference Information

Additional Comments for Sample Listed:

Samplenum	Matrix	Report Remarks	Sample Comments
L2566855-1	Water	Note: RRR: Detection limits adjusted due to low recovery in LCS.	

Qualifiers for Individual Parameters Listed:

Qualifier	Description
PEHR	Parameter Exceeded Recommended Holding Time On Receipt: Proceed With Analysis As Requested.
BODL	Limit of Reporting for BOD was increased to account for the largest volume of sample tested.
OWP	Organic water sample contained visible sediment (must be included as part of analysis). Measured concentrations of organic substances in water can be biased high due to presence of

Reference Information

sediment.

CDII	Comple Descived Uppresented Desults may be bised low for indicated perometer(a)
JAU	Sample Received Undreserved, Results may be plased low tor indicated barameter(s).

DLHC Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

RRR Refer to Report Remarks for issues regarding this analysis

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Method Reference**				
625-SAN-WT	Water	Ontario Sanitary Sewer SVOC Target List	SW-846 8270				
Samples are extracted with solvent and then analyzed by GC/MS.							
ALD+DIEL-CALC-WT	Water	Aldrin + Dieldrin Calculation	CALCULATION				
This calculation represents the sum of the aldrin and dieldrin analyzed for in a given sample.							
ALK-SPEC-PCT-WT	Water	Automated Speciated Alkalinity	АРНА 2320В				
This analysis is carried o hydroxide alkalinity are c	ut using proce alculated from	dures adapted from APHA Method 2320 ", phenolphthalein alkalinity and total alkalin	Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate an nity values.	nd			

BOD-C-WT Water BOD Carbonaceous APHA 5210 B (CBOD)

This analysis is carried out using procedures adapted from APHA Method 5210B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting and incubating a sample for a specified time period, and measuring the oxygen depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a glass fibre filter prior to dilution. Carbonaceous BOD (CBOD) is determined by adding a nitrification inhibitor to the diluted sample prior to incubation.

BR-IC-N-WT Water Bromide in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

CHLORDANE-T-CALC-WT Water Chlordane Total sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

CL-IC-N-WT Water Chloride by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CN-TOT-WT Water Cyanide, Total ISO 14403-2

Total cyanide is determined by the combination of UV digestion and distillation. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

When using this method, high levels of thiocyanate in samples can cause false positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, ALS recommends analysis for thiocyanate to check for this potential interference

COD-T-WT Water Chemical Oxygen Demand APHA 5220 D

This analysis is carried out using procedures adapted from APHA Method 5220 "Chemical Oxygen Demand (COD)". Chemical oxygen demand is determined using the closed reflux colourimetric method.

Reference Information

ethods Listed (if applicab	le):			13-AI K-21 13.33 (MT)
LS Test Code	Matrix	Test Description	Method Reference**	
COLOUR-APPARENT-W	Water	Colour	APHA 2120	
Apparent Colour is measu dependent, and apply to t	ired spectrop he pH of the	photometrically by comparison to platinum sample as received (at time of testing), w	r-cobalt standards using the single wavelength method after sample decanting. Colou ithout pH adjustment. Concurrent measurement of sample pH is recommended.	ur measurements can be highly p
CR-CR6-IC-WT	Water	Chromium +6	EPA 7199	
This analysis is carried ou The procedure involves a chromium and the chromi	it using proc nalysis for ch um (VI) resu	edures adapted from "Test Methods for E nromium (VI) by ion chromatography using llts.	valuating Solid Waste" SW-846, Method 7199, published by the United States Environ g diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the di	nmental Protection Agency (EPA ifference between the total
Analysis conducted in acc	ordance with	h the Protocol for Analytical Methods Use	d in the Assessment of Properties under Part XV.1 of the Environmental Protection A	ct (July 1, 2011).
DDD-DDE-DDT-CALC-W	Water	DDD, DDE, DDT sums	CALCULATION	
Calculation of Total DDD,	Total DDE a	and Total DDT		
EC-SCREEN-WT	Water	Conductivity Screen (Internal Use Only)	APHA 2510	
Qualitative analysis of co	nductivity wh	ere required during preparation of other te	ests - e.g. TDS, metals, etc.	
EC-WT	Water	Conductivity	APHA 2510 B	
Water samples can be m	easured dire	ctly by immersing the conductivity cell into	o the sample.	
EC-WW-MF-WT	Water	E. Coli	SM 9222D	
A 100 mL volume of sam	ole is filtered	through a membrane, the membrane is p	laced on mFC-BCIG agar and incubated at 44.5 -0.2 °C for 24 -2 h. Method ID: WT	-TM-1200
ETL-N2N3-WT	Water	Calculate from NO2 + NO3	APHA 4110 B	
ETL-SILICA-CALC-WT	Water	Calculate from SI-TOT-WT	EPA 200.8	
F-IC-N-WT	Water	Fluoride in Water by IC	EPA 300.1 (mod)	
Inorganic anions are anal	yzed by Ion (Chromatography with conductivity and/or	JV detection.	
HARDNESS-CALC-WT	Water	Hardness	APHA 2340 B	
Hardness (also known as are preferentially used for	Total Hardnet	ess) is calculated from the sum of Calciur s calculation.	n and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcin	um and Magnesium concentratio
HG-D-CVAA-WT	Water	Dissolved Mercury in Water by CVA	AS EPA 1631E (mod)	
Water samples are filtere	d (0.45 um),	preserved with hydrochloric acid, then un	dergo a cold-oxidation using bromine monochloride prior to reduction with stannous cl	nloride, and analyzed by CVAAS
Analysis conducted in acc	ordance with	h the Protocol for Analytical Methods Use	d in the Assessment of Properties under Part XV.1 of the Environmental Protection A	ct (July 1, 2011).
HG-T-CVAA-WT	Water	Total Mercury in Water by CVAAS	EPA 1631E (mod)	

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Reference Information

Methods Listed (if applicable	e):		
ALS Test Code	Matrix	Test Description	Method Reference**
MET-D-CCMS-WT	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	(0.45 um), pr	eserved with nitric acid, and analyzed by	CRC ICPMS.
Method Limitation (re: Sulf	ur): Sulfide an	d volatile sulfur species may not be recov	vered by this method.
Analysis conducted in acco	ordance with t	he Protocol for Analytical Methods Used	in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
MET-T-CCMS-WT	Water	Total Metals in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are digeste	ed with nitric a	nd hydrochloric acids, and analyzed by C	CRC ICPMS.
Method Limitation (re: Sulf	ur): Sulfide an	d volatile sulfur species may not be recov	vered by this method.
Analysis conducted in acco	ordance with t	he Protocol for Analytical Methods Used	in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
METHYLNAPS-CALC-WT	Water	PAH-Calculated Parameters	SW846 8270
NH3-F-WT	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
This analysis is carried out fluorescence detection for	, on sulfuric a the determina	cid preserved samples, using procedures tion of trace levels of ammonium in seaw	s modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with vater", Roslyn J. Waston et al.
NO2-IC-WT	Water	Nitrite in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion Ch	romatography with conductivity and/or U	V detection.
NO3-IC-WT	Water	Nitrate in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion Ch	romatography with conductivity and/or U	V detection.
NP,NPE-LCMS-WT	Water	Nonylphenols and Ethoxylates by LC/MS-MS	J. Chrom A849 (1999) p.467-482
Water samples are filtered	d and analyzed	d on LCMS/MS by direct injection.	
OCP-ROUTINE-WT	Water	Pesticides, Organochlorine in Water	SW846 8270
Samples are extracted usin	ng a solvent m	nixture and the resulting extracts are anal	yzed on GC/MSD
OGG-SPEC-CALC-WT	Water	Speciated Oil and Grease A/V Calc	CALCULATION
Sample is extracted with h	exane, sample	e speciation into mineral and animal/vege	etable fractions is achieved via silica gel separation and is then determined gravimetrically.
OGG-SPEC-WT	Water	Speciated Oil and Grease-Gravimetric	2 APHA 5520 B

The procedure involves an extraction of the entire water sample with hexane. Sample speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then determined gravimetrically.

Reference Information

Methods Listed (if applical	ble):		
ALS Test Code	Matrix	Test Description	Method Reference**
This analysis is carried o	out usina proce	dures adapted from APHA Method 4500)-P "Phosphorus". Total Phosphorus is deteremined colourimetrically after persulphate digestion of the sample.
PAH-511-WT	Water	PAH-O. Reg 153/04 (July 2011)	SW846 3510/8270
Aqueous samples, fortific	ed with surroga	ates, are extracted using liquid/liquid extr from benzo(i)fluoranthene if also prese	raction technique. The sample extracts are concentrated and then analyzed using GC/MS. Results for benzo(b)
Analysis conducted in ac of the Analytical Test Gro	cordance with oup (ATG) has	been requested (the Protocol states that	at all analytes in an ATG must be reported).
PAH-SUM-CALC-WT	Water	TOTAL PAH's	CALCULATION
Total PAH represents the to be included.	e sum of all PA	H analytes reported for a given sample.	. Note that regulatory agencies and criteria differ in their definitions of Total PAH in terms of the individual PAH analytes
PCB-WT	Water	Polychlorinated Biphenyls	EPA 8082
PCBs are extracted from	an aqueous s	ample at neutral pH with aliquots of dich	nloromethane using a modified separatory funnel technique. The extracts are analyzed by GC/MSD.
PH-WT	Water	рН	APHA 4500 H-Electrode
Water samples are analy	zed directly by	a calibrated pH meter.	
Analysis conducted in ac samples under this regul	cordance with ation is 28 day	the Protocol for Analytical Methods Use s	ed in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for
PHENOLS-4AAP-WT	Water	Phenol (4AAP)	EPA 9066
An automated method is colorimetrically.	used to distill	the sample. The distillate is then buffere	ed to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured
PO4-DO-COL-WT	Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS
This analysis is carried o filtered through a 0.45 m	ut using proce	dures adapted from APHA Method 4500	D-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field
SO4-IC-N-WT	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorgania aniona ara ana	lyzad by lon C	hromotography with conductivity and/or	
	Water	Total Dissolved Solids	
30LID3-1D3-W1	vvalei		
through a glass fibre filte	r, TDS is deter	dures adapted from APHA Method 2540 mined by evaporating the filtrate to dryn) "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample less at 180 degrees celsius.
SOLIDS-TSS-WT	Water	Suspended solids	APHA 2540 D-Gravimetric
A well-mixed sample is fi	iltered through	a weighed standard glass fibre filter and	the residue retained is dried in an oven at 104–1°C for a minimum of four hours or until a constant weight is achieved.
TKN-F-WT	Water	TKN in Water by Fluorescence	J. ENVIRON. MONIT., 2005,7,37-42,RSC
Total Kjeldahl Nitrogen is	s determined u	sing block digestion followed by Flow-inj	jection analysis with fluorescence detection
TOC-WT	Water	Total Organic Carbon	APHA 5310B

Reference Information

				15-APR-21 13:53 (MT)
Methods Listed (if applicat	ole):			
ALS Test Code	Matrix	Test Description	Method Reference**	
Sample is injected into a transported in a carrier ga	heated reactions and is mean	on chamber which is packed with an or sured by a non-dispersive infrared det	dative catalyst. The water is vaporized and the organic cabon is oxidiz ctor.	ed to carbon dioxide. The carbon dioxide is
TURBIDITY-WT	Water	Turbidity	APHA 2130 B	
Sample result is based of same conditions. Sample	n a compariso e readings are	n of the intensity of the light scattered obtained from a Nephelometer.	by the sample under defined conditions with the intensity of light scatte	red by a standard reference suspension under the
VOC-ROU-HS-WT	Water	Volatile Organic Compounds	SW846 8260	
Aqueous samples are an	alyzed by hea	dspace-GC/MS.		
XYLENES-SUM-CALC-W	T Water	Sum of Xylene Isomer Concentrat	ons CALCULATION	
Total xylenes represents	the sum of o->	wlene and m&p-xylene.		
*ALS test methods may inco	rporate modifi	cations from specified reference meth	ds to improve performance.	
Chain of Custody Numbers:				
The last two letters of the al	bove test code	(s) indicate the laboratory that perform	ed analytical analysis for that test. Refer to the list below:	
Laboratory Definition Code	e Laborato	ry Location		
WT	ALS ENV	IRONMENTAL - WATERLOO, ONTA	IO, CANADA	
GLOSSARY OF REPORT	TERMS			
Surrogates are compounds analysis as a check on rec	s that are simi overy. In repo	lar in behaviour to target analyte(s), bu rts that display the D.L. column, labor	that do not normally occur in environmental samples. For applicable or objectives for surrogates are listed there.	e tests, surrogates are added to samples prior to

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SÁMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

		Workorder:	L256685	5 R	eport Date: 1	5-APR-21		Page 1 of 22
Client:	Thurber Engineering Lte 2010 Winston Park Driv Oakville ON L6H 5R7	d. (Oakville) /e Unit 103						
Contact:	Rachel Bourassa							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
625-SAN-WT	Water							
Batch	R5404640							
WG3504568	8-2 LCS		00 7		0/			
3,3 -Dichior			63.7		%		50-140	19-MAR-21
Bis(2-ethylr	nexyi)phthalate		96.7		%		50-140	19-MAR-21
Di-n-bulyipi			100.7		%		50-140	19-MAR-21
Pentachion			110.3		70		50-140	19-MAR-21
3,3'-Dichlor	robenzidine		<0.40		ug/L		0.4	19-MAR-21
Bis(2-ethyll	hexyl)phthalate		<2.0		ug/L		2	19-MAR-21
Di-n-butylpl	hthalate		<1.0		ug/L	Ť	1	19-MAR-21
Pentachlor	ophenol		<0.50		ug/L		0.5	19-MAR-21
Surrogate:	2-Fluorobiphenyl		89.1		%		40-130	19-MAR-21
Surrogate:	2,4,6-Tribromophenol		88.2		%		40-130	19-MAR-21
Surrogate:	p-Terphenyl d14		118.8		%		40-130	19-MAR-21
WG3504568	8-4 MS	WG3504568-3						
3,3'-Dichlor	robenzidine		54.7		%		50-150	19-MAR-21
Bis(2-ethylł	hexyl)phthalate		94.3		%		50-150	19-MAR-21
Di-n-butylpl	hthalate		95.3		%		50-150	19-MAR-21
Pentachlor	ophenol		118.2		%		50-150	19-MAR-21
BOD-C-WT	Water			•				
Batch	R5406442							
WG350315	1-6 DUP	L2566855-2						
BOD Carbo	onaceous	<3.0	<3.0	RPD-NA	mg/L	N/A	30	16-MAR-21
BOD Carbo	1-7 LCS		97.0		%		95 115	16 MAD 21
WG350315	1-5 MB		01.0		70		00-110	10-WAR-21
BOD Carbo	onaceous		<2.0		mg/L		2	16-MAR-21
CN-TOT-WT	Water							
Batch	R5402189							
WG3503477	7-3 DUP	L2566643-1						
Cyanide, T	otal	0.0024	0.0045	J	mg/L	0.0022	0.004	16-MAR-21
WG3503477 Cvanide Tr	7-2 LCS		93 7		%		80 120	16-MAP 21
WC2E0247	7.1 MR		55.7		70		00-120	10-IVIAR-21
Cyanide, T	otal		<0.0020		mg/L		0.002	16-MAR-21
WG3503477	7-4 MS	L2566643-1			-			
Cyanide, T	otal		91.0		%		70-130	16-MAR-21

		Workorder:	L2566855	5 R	• eport Date: 15-	APR-21		Page 2 of 22
Client: Thu 201 Oa	urber Engineering Lto 10 Winston Park Driv kville ON L6H 5R7	d. (Oakville) re Unit 103						J
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
COD-T-WT	Water							
Batch R540 WG3504241-3 COD	02971 DUP	L2566191-1 24	26		mg/L	8.4	20	18-MAR-21
WG3504241-2 COD	LCS		100.2		%		85-115	18-MAR-21
WG3504241-1 COD	MB		<10		mg/L		10	18-MAR-21
WG3504241-4 COD	MS	L2566191-1	98.5		%		75-125	18-MAR-21
CR-CR6-IC-WT	Water					Ť		
Batch R540 WG3503887-4 Chromium, Hexav	02782 DUP valent	WG3503887-3 <0.00050	<0.00050	RPD-NA	mg/L	N/A	20	17-MAR-21
WG3503887-2 Chromium, Hexav	LCS /alent		100.6		%		80-120	17-MAR-21
WG3503887-1 Chromium, Hexav	MB /alent		<0.00050		mg/L		0.0005	17-MAR-21
WG3503887-5 Chromium, Hexav	MS /alent	WG3503887-3	97.9		%		70-130	17-MAR-21
EC-WW-MF-WT	Water							
Batch R540 WG3502930-3 E. Coli	02520 DUP	L2566855-1 0	<10	RPD-NA	CFU/100mL	N/A	65	16-MAR-21
WG3502930-1 E. Coli	MB		0		CFU/100mL		1	16-MAR-21
F-IC-N-WT	Water							
Batch R540 WG3503957-4	03000 DUP	WG3503957-3						
Fluoride (F) WG3503957-2	LCS	0.075	0.075		mg/L	0.1	20	17-MAR-21
Fluoride (F) WG3503957-1	МВ		102.3		% ma/l		90-110	17-MAR-21
WG3503957-5 Fluoride (F)	MS	WG3503957-3	100.5		%		75-125	17-WAR-21
HG-T-CVAA-WT	Water							··············

			Workorder:	L2566855	R	eport Date:	15-APR-21		Page 3 of 22
Client:	Thurber E 2010 Win Oakville	Engineering Ltd. (ston Park Drive L ON L6H 5R7	Oakville) Jnit 103						
Contact:	Rachel B	ourassa							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-T-CVAA-W	т	Water							
Batch	R5401807								
WG3502836 Mercury (H	5-4 DUP g)-Total		WG3502836-3 <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	16-MAR-21
WG3502836 Mercury (H	5-2 LCS g)-Total			103.0		%		80-120	16-MAR-21
WG3502836 Mercury (H	5-1 MB g)-Total			<0.0000050	2	mg/L		0.000005	16-MAR-21
WG3502836	6-6 MS		WG3502836-5						
Mercury (H	g)-Total			99.3		%		70-130	16-MAR-21
Batch	R5407711								
WG3505207 Mercury (H	7-3 DUP g)-Total		L2568290-1 <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	22-MAR-21
WG3505207 Mercury (H	7 -2 LCS g)-Total			100.0		%		80-120	22-MAR-21
WG3505207 Mercury (H	7-1 MB g)-Total			<0.0000050		mg/L		0.000005	22-MAR-21
WG3505207 Mercury (H	7-4 MS g)-Total		L2568425-1	100.3		%		70-130	22-MAR-21
MET-T-CCMS-	wт	Water							
Batch	R5401825								
WG3502672	2-4 DUP		WG3502672-3						
Aluminum ((AI)- I otal		<0.050	<0.050	RPD-NA	mg/L	N/A	20	16-MAR-21
Antimony (SD)- I Otal		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Arsenic (As	s)-iotai		<0.0010	< 0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Barium (Ba)- I otal		2.07	2.07		mg/L	0.1	20	16-MAR-21
Beryllium (E	Se)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Bismuin (B	r)- r otai		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-MAR-21
Boron (B)-1			<0.10	<0.10	RPD-NA	mg/L	N/A	20	16-MAR-21
Cadmum (<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	16-MAR-21
Calcium (C			400	404		mg/L	1.0	20	16-MAR-21
Chromium			<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	16-MAR-21
	bj- i utal		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	16-MAR-21
Cobalt (Co)			<0.0010	<0.0010	RPD-NA	mg/∟	N/A	20	16-MAR-21
Copper (Cu	i)- i otal		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	16-MAR-21
Iron (⊦e)-To	DTAI		1.40	1.39		mg/L	0.5	20	16-MAR-21
Lead (Pb)-	Iotal		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-MAR-21
Lithium (Li)	-Total		0.014	0.014		mg/L	1.6	20	16-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 4 of 22 Thurber Engineering Ltd. (Oakville) Client: 2010 Winston Park Drive Unit 103 Oakville ON L6H 5R7 Contact: Rachel Bourassa Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-T-CCMS-WT Water R5401825 Batch WG3502672-4 DUP WG3502672-3 Magnesium (Mg)-Total 178 177 mg/L 0.9 20 16-MAR-21 Manganese (Mn)-Total 0.157 0.157 mg/L 0.1 20 16-MAR-21 Molybdenum (Mo)-Total 0.00158 0.00157 mg/L 0.5 20 16-MAR-21 < 0.0050 Nickel (Ni)-Total < 0.0050 **RPD-NA** mg/L N/A 20 16-MAR-21 Phosphorus (P)-Total <0.50 < 0.50 **RPD-NA** mg/L N/A 20 16-MAR-21 Potassium (K)-Total 8.35 8.35 mg/L 0.1 20 16-MAR-21 Rubidium (Rb)-Total 0.0044 0.0038 mg/L 14 20 16-MAR-21 Selenium (Se)-Total < 0.00050 < 0.00050 **RPD-NA** mg/L N/A 20 16-MAR-21 mg/L Silicon (Si)-Total 11.9 12.0 0.9 20 16-MAR-21 Silver (Ag)-Total < 0.00050 < 0.00050 RPD-NA mg/L N/A 20 16-MAR-21 Sodium (Na)-Total 847 856 mg/L 1.1 20 16-MAR-21 Strontium (Sr)-Total 3.93 4.04 mg/L 2.6 20 16-MAR-21 Sulfur (S)-Total 8.5 8.4 mg/L 20 1.4 16-MAR-21 Thallium (TI)-Total < 0.00010 <0.00010 mg/L **RPD-NA** N/A 20 16-MAR-21 Tellurium (Te)-Total <0.0020 <0.0020 RPD-NA mg/L N/A 20 16-MAR-21 Thorium (Th)-Total < 0.0010 <0.0010 mg/L **RPD-NA** N/A 20 16-MAR-21 Tin (Sn)-Total < 0.0010 <0.0010 **RPD-NA** mg/L N/A 20 16-MAR-21 Titanium (Ti)-Total < 0.0030 < 0.0030 **RPD-NA** mg/L N/A 20 16-MAR-21 Tungsten (W)-Total <0.0010 <0.0010 mg/L N/A **RPD-NA** 20 16-MAR-21 Uranium (U)-Total 0.00030 0.00030 mg/L 1.2 20 16-MAR-21 Vanadium (V)-Total < 0.0050 < 0.0050 mg/L **RPD-NA** N/A 20 16-MAR-21 Zinc (Zn)-Total < 0.030 < 0.030 mg/L **RPD-NA** N/A 20 16-MAR-21 Zirconium (Zr)-Total <0.0020 < 0.0020 **RPD-NA** mg/L N/A 20 16-MAR-21 WG3502672-2 LCS Aluminum (Al)-Total 105.0 % 80-120 16-MAR-21 Antimony (Sb)-Total 105.1 % 80-120 16-MAR-21 Arsenic (As)-Total 102.0 % 80-120 16-MAR-21 Barium (Ba)-Total 106.0 % 80-120 16-MAR-21 Beryllium (Be)-Total 99.9 % 80-120 16-MAR-21 Bismuth (Bi)-Total 104.4 % 80-120 16-MAR-21 Boron (B)-Total % 100.6 80-120 16-MAR-21 Cadmium (Cd)-Total 103.2 % 80-120 16-MAR-21 Calcium (Ca)-Total 102.1 % 80-120 16-MAR-21

			Workorder:	L256685	55 I	Report Date: 1	15-APR-21		Page 5 of 22	2
Client:	Thurber I 2010 Wir Oakville	Engineering Lt Iston Park Dri ON 16H 5R7	d. (Oakville) ve Unit 103							
Contact:	Rachel B	lourassa								
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	-
MET-T-CCMS	S-WT	Water								-
Batch	R5401825									
WG35026	72-2 LCS									
Chromiur	n (Cr)-Total			104.2		%		80-120	16-MAR-21	
Cesium (Cs)-Total			104.9		%		80-120	16-MAR-21	
Cobalt (C	o)-Total			103.4		%		80-120	16-MAR-21	
Copper (0	Cu)-Total			100.5		%		80-120	16-MAR-21	
Iron (Fe)-	Total			104.4		%		80-120	16-MAR-21	
Lead (Pb))-Total			104.9		%		80-120	16-MAR-21	
Lithium (L	_i)-Total			101.4		%		80-120	16-MAR-21	
Magnesiu	ım (Mg)-Total			108.2		%		80-120	16-MAR-21	
Mangane	se (Mn)-Total			103.7		%		80-120	16-MAR-21	
Molybden	ium (Mo)-Tota	1		101.1		%		80-120	16-MAR-21	
Nickel (N	i)-Total			100.9		%		80-120	16-MAR-21	
Phosphor	rus (P)-Total			108.4		%		70-130	16-MAR-21	
Potassiur	n (K)-Total			105.4		%		80-120	16-MAR-21	
Rubidium	(Rb)-Total			103.3		%		80-120	16-MAR-21	
Selenium	(Se)-Total			101.1		%		80-120	16-MAR-21	
Silicon (S	i)-Total			105.1		%		60-140	16-MAR-21	
Silver (Ag)-Total			102.8		%		80-120	16-MAR-21	
Sodium (I	Na)-Total			106.1		%		80-120	16-MAR-21	
Strontium	ı (Sr)-Total			102.8		%		80-120	16-MAR-21	
Sulfur (S)	-Total			101.5		%		80-120	16-MAR-21	
Thallium	(TI)-Total			104.6		%		80-120	16-MAR-21	
Tellurium	(Te)-Total			95.7		%		80-120	16-MAR-21	
Thorium ((Th)-Total			107.0		%		80-120	16-MAR-21	
Tin (Sn)-	Total			102.7		%		80-120	16-MAR-21	
Titanium	(Ti)-Total			98.2		%		80-120	16-MAR-21	
Tungsten	(W)-Total			102.5		%		80-120	16-MAR-21	
Uranium	(U)-Total			109.6		%		80-120	16-MAR-21	
Vanadiun	n (V)-Total			105.5		%		80-120	16-MAR-21	
Zinc (Zn)·	-Total			101.8		%		80-120	16-MAR-21	
Zirconium	n (Zr)-Total			100.2		%		80-120	16-MAR-21	
WG35026	72-1 MB			_						
Aluminum	n (AI)-Total			<0.0050	_	mg/L		0.005	16-MAR-21	
Antimony	(Sb)-Total			<0.00010)	mg/L		0.0001	16-MAR-21	
Arsenic (A	As)-Total			<0.00010)	mg/L		0.0001	16-MAR-21	

			Workorder	L256685	5	Report Date: 15	-APR-21		Page 6 of 22
Client:	Thurber E 2010 Win Oakville	Engineering Ltd ston Park Drive ON L6H 5R7	. (Oakville) e Unit 103						
Contact:	Rachel B	ourassa							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS	S-WT	Water							
Batch	R5401825								
WG350267 Barium (B	72-1 MB Ba)-Total			<0.00010)	mg/L		0.0001	16-MAR-21
Beryllium	(Be)-Total			<0.00010)	mg/L		0.0001	16-MAR-21
Bismuth (Bi)-Total			<0.00005	50	mg/L		0.00005	16-MAR-21
Boron (B)	-Total			<0.010		mg/L		0.01	16-MAR-21
Cadmium	(Cd)-Total			<0.00000	050	mg/L		0.000005	16-MAR-21
Calcium (Ca)-Total			<0.050		mg/L		0.05	16-MAR-21
Chromium	n (Cr)-Total			<0.00050)	mg/L		0.0005	16-MAR-21
Cesium (C	Cs)-Total			<0.00001	0	mg/L		0.00001	16-MAR-21
Cobalt (C	o)-Total			<0.00010)	mg/L		0.0001	16-MAR-21
Copper (C	Cu)-Total			<0.00050		mg/L		0.0005	16-MAR-21
Iron (Fe)-	Total			<0.010		mg/L		0.01	16-MAR-21
Lead (Pb)	-Total			<0.00005	50	mg/L		0.00005	16-MAR-21
Lithium (L	i)-Total			<0.0010		mg/L		0.001	16-MAR-21
Magnesiu	m (Mg)-Total			<0.0050		mg/L		0.005	16-MAR-21
Manganes	se (Mn)-Total			<0.00050		mg/L		0.0005	16-MAR-21
Molybden	um (Mo)-Total			<0.00005	50	mg/L		0.00005	16-MAR-21
Nickel (Ni)-Total			<0.00050		mg/L		0.0005	16-MAR-21
Phosphor	us (P)-Total			<0.050		mg/L		0.05	16-MAR-21
Potassium	n (K)-Total			<0.050		mg/L		0.05	16-MAR-21
Rubidium	(Rb)-Total			<0.00020)	mg/L		0.0002	16-MAR-21
Selenium	(Se)-Total			<0.00005	50	mg/L		0.00005	16-MAR-21
Silicon (Si	i)-Total			<0.10		mg/L		0.1	16-MAR-21
Silver (Ag)-Total			<0.00005	50	mg/L		0.00005	16-MAR-21
Sodium (N	Na)-Total			<0.050		mg/L		0.05	16-MAR-21
Strontium	(Sr)-Total			<0.0010		mg/L		0.001	16-MAR-21
Sulfur (S)	-Total			<0.50		mg/L		0.5	16-MAR-21
Thallium ((TI)-Total			<0.00001	0	mg/L		0.00001	16-MAR-21
Tellurium	(Te)-Total			<0.00020)	mg/L		0.0002	16-MAR-21
Thorium (Th)-Total			<0.00010)	mg/L		0.0001	16-MAR-21
Tin (Sn)-T	Total			<0.00010)	mg/L		0.0001	16-MAR-21
Titanium ((Ti)-Total			<0.00030)	mg/L		0.0003	16-MAR-21
Tungsten	(W)-Total			<0.00010)	mg/L		0.0001	16-MAR-21
Uranium ((U)-Total			<0.00001	0	mg/L		0.00001	16-MAR-21

			Workorder:	L2566855	5	Report Date: 1	5-APR-21		Page 7 of 22
Client:	Thurber E 2010 Win Oakville	Engineering Ltd. Iston Park Drive ON L6H 5R7	(Oakville) 9 Unit 103						
Contact:	Rachel B	ourassa							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS	-WT	Water							
Batch	R5401825								
WG350267 Vanadium	2-1 MB			~0 00050		ma/l		0 0005	16 MAD 21
Zinc (Zn)-	Total			<0.00000		mg/L		0.0000	10-WAR-21
Zirconium	(Zr)-Total			<0.0000		mg/L		0.0002	10-WAR-21
WG350267	(2-5 MS		WG3502672-3	<0.00020		ing/L		0.0002	10-WAR-21
Aluminum	(AI)-Total		WG5502072-5	101.0		%		70-130	16-MAR-21
Antimony	(Sb)-Total			106.4		%		70-130	16-MAR-21
Arsenic (A	s)-Total			101.5		%		70-130	16-MAR-21
Barium (B	a)-Total			N/A	MS-B	%		-	16-MAR-21
Beryllium	(Be)-Total			104.0		%		70-130	16-MAR-21
Bismuth (B	Bi)-Total			97.7		%		70-130	16-MAR-21
Boron (B)-	Total			92.7		%		70-130	16-MAR-21
Cadmium	(Cd)-Total			98.9		%		70-130	16-MAR-21
Calcium (0	Ca)-Total			N/A	MS-B	%		-	16-MAR-21
Chromium	(Cr)-Total			101.6		%		70-130	16-MAR-21
Cesium (C	cs)-Total			104.7		%		70-130	16-MAR-21
Cobalt (Co	o)-Total			100.6		%		70-130	16-MAR-21
Copper (C	u)-Total			97.0		%		70-130	16-MAR-21
Iron (Fe)-1	Fotal			N/A	MS-B	%		-	16-MAR-21
Lead (Pb)	-Total			98.8		%		70-130	16-MAR-21
Lithium (Li	i)-Total			N/A	MS-B	%		-	16-MAR-21
Magnesiur	m (Mg)-Total			N/A	MS-B	%		-	16-MAR-21
Manganes	se (Mn)-Total			N/A	MS-B	%		-	16-MAR-21
Molybdenu	um (Mo)-Total	I		105.1		%		70-130	16-MAR-21
Phosphoru	us (P)-Total			111.3		%		70-130	16-MAR-21
Potassium	n (K)-Total			N/A	MS-B	%		-	16-MAR-21
Rubidium	(Rb)-Total			100.3		%		70-130	16-MAR-21
Selenium	(Se)-Total			99.8		%		70-130	16-MAR-21
Silicon (Si)-Total			N/A	MS-B	%		-	16-MAR-21
Silver (Ag)	-Total			99.4		%		70-130	16-MAR-21
Sodium (N	la)-Total			N/A	MS-B	%		-	16-MAR-21
Strontium	(Sr)-Total			N/A	MS-B	%		-	16-MAR-21
Sulfur (S)-	Total			N/A	MS-B	%		-	16-MAR-21
Thallium (TI)-Total			98.1		%		70-130	16-MAR-21
Tellurium	(Te)-Total			87.2		%		70-130	16-MAR-21

		Workorder	: L256685	55 F	Report Date:	15-APR-21		Page 8 of 22
Client:	Thurber Engineering 2010 Winston Park Oakville ON L6H 5	g Ltd. (Oakville) Drive Unit 103 R7						
Contact:	Rachel Bourassa							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-	WT Water							
Batch	R5401825							
WG3502672 Thorium (T	2-5 MS ˈh)-Total	WG3502672	-3 102.4		%		70-130	16-MAR-21
Tin (Sn)-To	otal		102.0		%		70-130	16-MAR-21
Titanium (1	Γi)-Total		103.1		%		70-130	16-MAR-21
Tungsten () W)-Total		99.9		%		70-130	16-MAR-21
Uranium (L	J)-Total		N/A	MS-B	%		-	16-MAR-21
Vanadium	(V)-Total		110.8		%		70-130	16-MAR-21
Zinc (Zn)-T	otal		101.2		%		70-130	16-MAR-21
Zirconium	(Zr)-Total		101.0		%		70-130	16-MAR-21
NP.NPE-LCMS	S-WT Water							
Batch	R5403088							
WG3502812	2-3 DUP	L2566189-1						
Nonylphen	ol	<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21
Nonylphen	ol Monoethoxylates	<2.0	<2.0	RPD-NA	ug/L	N/A	30	17-MAR-21
Nonylphen	ol Diethoxylates	<0.10	<0.10	RPD-NA	ug/L	N/A	30	17-MAR-21
WG3502812 Nonylphene	2-2 LCS ol		87.4		%		75-125	17-MAR-21
Nonylphen	ol Monoethoxylates		100.1		%		75-125	17-MAR-21
Nonylphen	ol Diethoxylates		107.0	•	%		75-125	17-MAR-21
WG3502812 Nonylphen	2-1 MB ol		<1.0		ug/L		1	17-MAR-21
Nonylphen	ol Monoethoxylates		<2.0		ug/L		2	17-MAR-21
Nonylphen	ol Diethoxylates		<0.10		ug/L		0.1	17-MAR-21
WG3502812	2-4 MS	L2566189-1	07.0		0/			
Nonylphen			97.9		%		50-150	17-MAR-21
Nonyipnen			109.9		%		50-150	17-MAR-21
Nonyipnen	of Diethoxylates		93.3		%		50-150	17-MAR-21
OCP-ROUTINE	E-WT Water							
Batch	R5402507							
Aldrin	4-2 LUS		106.5		%		50-150	17-MAR-21
gamma-he	xachlorocyclohexane		94.9		%		50-150	17-MAR-21
- a-chlordan	e		98.3		%		50-150	17-MAR-21
g-chlordan	e		97.3		%		50-150	17-MAR-21
alpha-BHC			98.1		%		50-150	17-MAR-21

		Workorder	L256685	55	Report Date: 18	5-APR-21		Page 9 of 22
Client: Contact:	Thurber Engineering Ltu 2010 Winston Park Driv Oakville ON L6H 5R7 Rachel Bourassa	d. (Oakville) /e Unit 103						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
OCP-ROUTIN	IE-WT Water							
Batch	R5402507							
WG35034	74-2 LCS							
beta-BHC			73.0		%		50-150	17-MAR-21
delta-BHC	;		88.3		%		50-150	17-MAR-21
o,p-DDD			100.2		%		50-150	17-MAR-21
pp-DDD			115.6		%		50-150	17-MAR-21
o,p-DDE			90.3		%		50-150	17-MAR-21
pp-DDE			99.9		%		50-150	17-MAR-21
op-DDT			72.5		%		50-150	17-MAR-21
pp-DDT			60.9		%		50-150	17-MAR-21
Dieldrin			113.0		%		50-150	17-MAR-21
Endosulfa	in l 		90.2		%		50-150	17-MAR-21
Endosulfa	in II		91.2		%		50-150	17-MAR-21
Endosulfa	in Sulfate		128.1		%		50-150	17-MAR-21
Endrin			55.0		%		50-150	17-MAR-21
Endrin Ald	dehyde		125.3		%		50-150	17-MAR-21
Heptachlo	or		78.0		%		50-150	17-MAR-21
Heptachlo	or Epoxide		96.3		%		50-150	17-MAR-21
Hexachlo	robenzene		91.7		%		50-150	17-MAR-21
Hexachlo	robutadiene		84.0		%		50-150	17-MAR-21
Hexachlo	roethane		90.6		%		50-150	17-MAR-21
Methoxyc	hlor		70.3		%		50-150	17-MAR-21
Mirex			143.2		%		50-150	17-MAR-21
Oxychloro	lane		99.9		%		50-150	17-MAR-21
Pentachlo	pronitrobenzene		93.0		%		50-150	17-MAR-21
trans-Nor	achlor		99.1		%		50-150	17-MAR-21
WG35034	74-1 MB		-0.0090		ug/l		0.008	
Aluliii aamma h	avaablaraavalabayana		<0.0080		ug/L		0.000	17-MAR-21
gamma-n			<0.0080		ug/L		0.008	17-MAR-21
a-chiorda			<0.0080		ug/L		0.008	17-MAR-21
g-chiorda			<0.0080		ug/L		0.008	17-MAR-21
aipna-BH			<0.0080		ug/∟		0.000	17-MAR-21
			<0.0080		ug/∟		0.000	17-MAR-21
deita-BH(<0.0080		ug/L		0.008	17-MAR-21
o,p-DDD			<0.0040		ug/L		0.004	17-MAR-21
pp-DDD			<0.0040		ug/L		0.004	17-MAR-21

		Workorder	: L256685	5	Report Date: 1	5-APR-21		Page 10 of 22
Client: Contact:	Thurber Engineering Ltd 2010 Winston Park Driv Oakville ON L6H 5R7 Rachel Bourassa	d. (Oakville) ve Unit 103						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
OCP-ROUTIN	IE-WT Water							
Batch	R5402507							
WG35034	74-1 MB							
o,p-DDE			<0.0040		ug/L		0.004	17-MAR-21
pp-DDE			<0.0040		ug/L		0.004	17-MAR-21
			<0.0040		ug/L		0.004	17-MAR-21
pp-DD1			<0.0040		ug/L		0.004	17-MAR-21
Dielarin			<0.0080		ug/L		0.008	17-MAR-21
Endosulta			<0.0070		ug/L		0.007	17-MAR-21
Endosulia			<0.0070		ug/L	•	0.007	17-MAR-21
Endosulia	in Sullale		<0.0070		ug/L		0.007	17-MAR-21
Endrin Ak	lahuda		<0.010		ug/L		0.01	17-MAR-21
Hentachle	aeriyde ar		<0.010		ug/L		0.01	17-MAR-21
Hentachic	or Epoxide		<0.0080		ug/L		0.008	17-MAR-21
Hevechlor			<0.0080		ug/L		0.000	17-MAR-21
Heyachlo	robutadiene		<0.0080		ug/L		0.000	17-MAR-21
Hevachlo	roethane		<0.0080		ug/L		0.000	17-MAR-21
Methoxyc	blor		<0.0000		ug/L		0.000	17-WAR-21
Mirov			<0.0000		ug/L		0.000	17-MAR-21
Oxychloro	lane		<0.0080		ug/L		0.008	17-WAR-21
Pentachic	ronitrobenzene		<0.0000		ug/L		0.01	17-MAR-21
trans-Non	achlor		<0.010		ug/L		0.01	17-MAR-21
Surrogate	: Decachlorobiphenvl		125.6		~g, <u>−</u> %		40-130	17-MAR-21
Surrogate	: Tetrachloro-m-xvlene		88.8		%		40-130	17-MAR-21
Detak	DE404407		0010					
Batch WG35030	R5404187 68-2 LCS							
Aldrin			111.5		%		50-150	19-MAR-21
gamma-h	exachlorocyclohexane		103.8		%		50-150	19-MAR-21
a-chlorda	ne		114.4		%		50-150	19-MAR-21
g-chlorda	ne		117.0		%		50-150	19-MAR-21
alpha-BH	С		105.8		%		50-150	19-MAR-21
beta-BHC			89.5		%		50-150	19-MAR-21
delta-BHC	;		101.1		%		50-150	19-MAR-21
o,p-DDD			113.2		%		50-150	19-MAR-21
pp-DDD			122.4		%		50-150	19-MAR-21
o,p-DDE			106.5		%		50-150	19-MAR-21

		Workorder:	L256685	5	Report Date: 15	-APR-21		Page 11 of 22
Client: Contact:	Thurber Engineering L 2010 Winston Park Dri Oakville ON L6H 5R7 Rachel Bourassa	td. (Oakville) ive Unit 103 ,						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
OCP-ROUTINE-	-WT Water							
Batch	R5404187							
WG3503068-	-2 LCS							
pp-DDE			117.9		%		50-150	19-MAR-21
op-DDT			118.6		%		50-150	19-MAR-21
pp-DDT			100.2		%		50-150	19-MAR-21
Dieldrin			129.5		%		50-150	19-MAR-21
Endosulfan	I		102.2		%		50-150	19-MAR-21
Endosulfan	11		102.1		%		50-150	19-MAR-21
Endosulfan	Sulfate		135.8		%		50-150	19-MAR-21
Endrin			39.0	RRQC	%		50-150	19-MAR-21
Endrin Alder	nyde		139.1		%		50-150	19-MAR-21
Heptachlor			93.2		%		50-150	19-MAR-21
Heptachlor E	Epoxide		117.7		%		50-150	19-MAR-21
Hexachlorob	benzene		96.4		%		50-150	19-MAR-21
Hexachlorob	outadiene		89.8		%		50-150	19-MAR-21
Hexachloroe	ethane		94.9		%		50-150	19-MAR-21
Methoxychic	or		92.7		%		50-150	19-MAR-21
Mirex			148.1		%		50-150	19-MAR-21
Oxychlordar	ne		115.5		%		50-150	19-MAR-21
Pentachloro	nitrobenzene		99.1	*	%		50-150	19-MAR-21
trans-Nonac	:hlor		103.4		%		50-150	19-MAR-21

WG3503068-1 MB Aldrin <0.0080 ug/L 0.008 19-MAR-21 gamma-hexachlorocyclohexane <0.0080 ug/L 0.008 19-MAR-21 a-chlordane <0.0080 0.008 ug/L 19-MAR-21 0.008 g-chlordane <0.0080 ug/L 19-MAR-21 alpha-BHC <0.0080 ug/L 0.008 19-MAR-21 beta-BHC <0.0080 0.008 ug/L 19-MAR-21 delta-BHC <0.0080 ug/L 0.008 19-MAR-21 o,p-DDD < 0.0040 ug/L 0.004 19-MAR-21 pp-DDD < 0.0040 0.004 ug/L 19-MAR-21 o,p-DDE < 0.0040 0.004 ug/L 19-MAR-21 pp-DDE < 0.0040 ug/L 0.004 19-MAR-21 op-DDT < 0.0040 ug/L 0.004 19-MAR-21 pp-DDT < 0.0040 ug/L 0.004 19-MAR-21

			Workorder:	L256685	5 I	Report Date: 1	5-APR-21		Page 12 of 22
Client: Contact:	Thurber 2010 Wi Oakville Rachel B	Engineering Li nston Park Dri ON L6H 5R7 3ourassa	td. (Oakville) ve Unit 103						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
OCP-ROUTIN	IE-WT	Water							
Batch	R5404187	,							
WG35030	68-1 MB					<i>a</i>		0.000	
Dielarin	- 1			<0.0080		ug/L		0.008	19-MAR-21
Endosulta	in I			<0.0070		ug/L		0.007	19-MAR-21
Endosulta	in II			<0.0070		ug/L		0.007	19-MAR-21
Endosulta	in Sulfate			<0.0070		ug/L		0.007	19-MAR-21
Enarin Endrin Ala	labuda			<0.010		ug/L		0.01	19-MAR-21
	aenyde sr			<0.010		ug/L		0.01	19-MAR-21
Hoptochic	n r Epoxido			<0.0080		ug/L	*	0.008	19-MAR-21
Hevachlor				<0.0000		ug/L		0.008	19-MAR-21
Hevachlo	robutadiene			<0.0000		ug/L		0.000	19-MAR-21
Hexachlo	roethane			<0.0000		ug/L		0.000	19-MAR-21
Methoxyc	hlor			<0.0000		ug/L		0.008	19-MAR-21
Mirex				<0.0080		ug/L		0.008	19-MAR-21
Oxychloro	lane			<0.0080		ug/L		0.008	19-MAR-21
Pentachlo	oronitrobenze	ne		< 0.010		ug/L		0.01	19-MAR-21
trans-Non	achlor			<0.010		ug/L		0.01	19-MAR-21
Surrogate	: Decachloro	biphenyl		128.1		%		40-130	19-MAR-21
Surrogate	: Tetrachloro	-m-xylene		95.7	•	%		40-130	19-MAR-21
OGG-SPEC-V	vт	Water							
Batch	R5403028	}							
WG35041	76-2 LCS								
Oil and G	rease, Total			95.4		%		70-130	18-MAR-21
Mineral O	il and Grease)		93.2		%		70-130	18-MAR-21
WG35041	76-1 MB			5.0				-	
Oil and G	rease, Total			<5.0		mg/L		5	18-MAR-21
wineral O	ll and Grease			<2.5		mg/∟		2.5	18-MAR-21
P-T-COL-WT		Water							
Batch	R5407361								
WG35051: Phosphor	us. Total		L2567022-1 0.0316	0.0319		ma/L	12	20	22-MAR-21
WG35051	59-2 1 CS					J –			
Phosphor	us, Total			98.0		%		80-120	22-MAR-21
WG35051	59-1 MB								
Phosphor	us, Total			<0.0030		mg/L		0.003	22-MAR-21
WG35051	59-4 MS		L2567022-1						

			Workorder:	L256685	55 F	Report Date: 1	5-APR-21		Page 13 of 22
Client:	Thurber E 2010 Win Oakville Bachel Br	ingineering Lt ston Park Driv ON L6H 5R7	d. (Oakville) /e Unit 103						
lest		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
P-T-COL-WT		Water							
Batch	R5407361								
WG3505159 Phosphoru	9-4 MS s, Total		L2567022-1	92.3		%		70-130	22-MAR-21
PAH-511-WT		Water							
Batch	R5401918								
WG3502652	2-2 LCS			105.0		06		50 140	16 MAD 21
2-Methylna	phthalene			98.7		%		50-140	16 MAR 21
Acenaphth	ene			104.6		%		50-140	16-MAR-21
Acenaphth	vlene			99.3		%		50-140	16-MAR-21
Anthracene	9			102.1		%		50-140	16-MAR-21
Benzo(a)ar	nthracene			80.4		%		50-140	16-MAR-21
Benzo(a)py	/rene			91.5		%		50-140	16-MAR-21
Benzo(b&j)	fluoranthene			87.9		%		50-140	16-MAR-21
Benzo(g,h,i	i)perylene			124.5		%		50-140	16-MAR-21
Benzo(k)flu	oranthene			90.4		%		50-140	16-MAR-21
Chrysene				107.0		%		50-140	16-MAR-21
Dibenz(a,h))anthracene			104.1		%		50-140	16-MAR-21
Fluoranthe	ne			102.9		%		50-140	16-MAR-21
Fluorene				104.4		%		50-140	16-MAR-21
Indeno(1,2	,3-cd)pyrene			106.6		%		50-140	16-MAR-21
Naphthaler	ne			101.9		%		50-140	16-MAR-21
Phenanthre	ene			104.3		%		50-140	16-MAR-21
Pyrene				104.1		%		50-140	16-MAR-21
WG3502652 1-Methylna	2-1 MB			<0.020		ug/L		0.02	16-MAR-21
2-Methylna	, phthalene			<0.020		ug/L		0.02	16-MAR-21
Acenaphth	ene			<0.020		ug/L		0.02	16-MAR-21
Acenaphth	ylene			<0.020		ug/L		0.02	16-MAR-21
Anthracene	e			<0.020		ug/L		0.02	16-MAR-21
Benzo(a)ar	nthracene			<0.020		ug/L		0.02	16-MAR-21
Benzo(a)py	/rene			<0.010		ug/L		0.01	16-MAR-21
Benzo(b&j)	fluoranthene			<0.020		ug/L		0.02	16-MAR-21
Benzo(g,h,	i)perylene			<0.020		ug/L		0.02	16-MAR-21
Benzo(k)flu	oranthene			<0.020		ug/L		0.02	16-MAR-21

		Workorder	L256685	5	Report Date: 1	5-APR-21		Page 14 of 22
Client:	Thurber Engineering Lt 2010 Winston Park Dri Oakville ON L6H 5R7	d. (Oakville) ve Unit 103						
Contact:	Rachel Bourassa							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Water							
Batch	R5401918							
WG3502652 Chrysene	2-1 MB		<0.020		ug/L		0.02	16-MAR-21
Dibenz(a,h))anthracene		<0.020		ug/L	•	0.02	16-MAR-21
Fluoranthei	ne		<0.020		ug/L		0.02	16-MAR-21
Fluorene			<0.020		ug/L		0.02	16-MAR-21
Indeno(1,2,	,3-cd)pyrene		<0.020		ug/L		0.02	16-MAR-21
Naphthalen	e		<0.050		ug/L		0.05	16-MAR-21
Phenanthre	ene		<0.020		ug/L		0.02	16-MAR-21
Pyrene			<0.020		ug/L		0.02	16-MAR-21
Surrogate:	Naphthalene d8		98.2		%		60-140	16-MAR-21
Surrogate:	Phenanthrene d10		94.3		%		60-140	16-MAR-21
Surrogate:	Chrysene d12		80.3		%		50-150	16-MAR-21
PCB-WT	Water			\mathbf{V}				
Batch WG3503068	R5402911 3-2 LCS							
Aroclor 124	2		83.4		%		65-130	18-MAR-21
Aroclor 124	18		97.9		%		65-130	18-MAR-21
Aroclor 125	54		73.8		%		65-130	18-MAR-21
Aroclor 126	60		88.4		%		65-130	18-MAR-21
WG3503068 Aroclor 124	3-1 MB 12		<0.020		ug/L		0.02	18-MAR-21
Aroclor 124	18		<0.020		ug/L		0.02	18-MAR-21
Aroclor 125	54		<0.020		ug/L		0.02	18-MAR-21
Aroclor 126	60		<0.020		ug/L		0.02	18-MAR-21
Surrogate:	Decachlorobiphenyl		112.8		%		50-150	18-MAR-21
Surrogate:	Tetrachloro-m-xylene		104.1		%		50-150	18-MAR-21
Batch	R5403059							
WG3503474 Aroclor 124	1-2 LCS 12		108.5		%		65-130	18-MAR-21
Aroclor 124	18		85.7		%		65-130	18-MAR-21
Aroclor 125	54		98.5		%		65-130	18-MAR-21
Aroclor 126	60		117.4		%		65-130	18-MAR-21
WG3503474	4-1 MB		_					
Aroclor 124	2		<0.020		ug/L		0.02	18-MAR-21
Aroclor 124	18		<0.020		ug/L		0.02	18-MAR-21

			Workorder:	L256685	5 F	Report Date: 15	5-APR-21		Page 15 of 22
Client:	Thurber E 2010 Win Oakville	Engineering Ltd. (iston Park Drive I ON L6H 5R7	(Oakville) Unit 103						
Contact:	Rachel B	ourassa							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PCB-WT		Water							
Batch	R5403059								
WG3503474 Aroclor 125	4-1 MB 54			<0.020		ug/L		0.02	18-MAR-21
Aroclor 126	50			<0.020		ug/L		0.02	18-MAR-21
Surrogate:	Decachlorob	iphenyl		122.0		%		50-150	18-MAR-21
Surrogate:	Tetrachloro-r	m-xylene		97.8		%		50-150	18-MAR-21
PH-WT		Water							
Batch	R5401759								
WG350280 : рН	3-4 DUP		WG3502803-3 8.22	8.26	J	pH units	0.04	0.2	16-MAR-21
WG3502803	3-2 LCS								
рН				7.00		pH units		6.9-7.1	16-MAR-21
PHENOLS-4A	AP-WT	Water							
Batch	R5405037								
WG350478 Phenols (4	5-3 DUP AAP)		L2566739-1 <0.0010	<0.0010	RPD-NA	mg/L	N/A	20	19-MAR-21
WG350478 Phenols (4	5-2 LCS AAP)			85,7		%		85-115	19-MAR-21
WG350478 Phenols (4	5-1 MB AAP)			<0.0010		mg/L		0.001	19-MAR-21
WG350478	5-4 MS		L2566739-1			-			
Phenols (4	AAP)			84.8		%		75-125	19-MAR-21
SOLIDS-TSS-V	νT	Water							
Batch	R5408260		•						
WG350517 [,] Total Susp	1-3 DUP ended Solids		L2566855-1 140	163		mg/L	15	20	20-MAR-21
WG350517 ²	1-2 LCS					·			
Total Susp	ended Solids			103.5		%		85-115	20-MAR-21
WG350517 Total Susp	1-1 MB ended Solids			<3.0		mg/L		3	20-MAR-21
TKN-F-WT		Water							
Batch	R5404670								
WG350474 Total Kjeld	B-3 DUP ahl Nitrogen		L2566781-2 3.97	4.13		mg/L	4.0	20	19-MAR-21
WG3504804	4-3 DUP		L2567022-1						
Total Kjeld	ahl Nitrogen		0.520	0.530		mg/L	1.9	20	19-MAR-21
WG3504748 Total Kielda	B-2 LCS ahl Nitrogen			99.8		%		75-125	19-MAR-21

			Workorder:	L256685	55 R	eport Date:	15-APR-21		Page 16 of 22
Client:	Thurber E 2010 Win Oakville	Engineering Ltd. Iston Park Drive ON L6H 5R7	(Oakville) 9 Unit 103						
Contact:	Rachel B	ourassa							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TKN-F-WT		Water							
Batch	R5404670								
WG350480 Total Kjelo	04-2 LCS dahl Nitrogen			100.5		%		75-125	19-MAR-21
WG350474 Total Kjelo	48-1 MB dahl Nitrogen			<0.050		mg/L		0.05	19-MAR-21
WG350480 Total Kjelo	04-1 MB dahl Nitrogen			<0.050		mg/L		0.05	19-MAR-21
WG350474	48-4 MS		L2566781-2						
Total Kjelo	dahl Nitrogen			99.2		%		70-130	19-MAR-21
WG350480	04-4 MS		L2567022-1	405.0			•		
i otal Kjelo	dani Nitrogen			105.0		%		70-130	19-MAR-21
VOC-ROU-HS	S-WT	Water							
Batch	R5402257		W02502420	•					
₩G35034 1,1,1,2-Te	su-4 DUP etrachloroethai	ne	<0.50	3 <0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
1,1,2,2-Te	etrachloroetha	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
1,1,1-Tric	hloroethane		0.61	0.63		ug/L	3.2	30	17-MAR-21
1,1,2-Tric	hloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
1,2-Dibror	moethane		<0.20	<0.20	RPD-NA	ug/L	N/A	30	17-MAR-21
1,1-Dichlo	proethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
1,1-Dichlo	proethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
1,2-Dichlo	orobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAR-21
1,2-Dichlo	proethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
1,2-Dichlo	propropane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
1,3-Dichlo	orobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAR-21
1,4-Dichlo	orobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAR-21
2-Hexano	ne		<20	<20	RPD-NA	ug/L	N/A	30	17-MAR-21
Acetone			<20	<20	RPD-NA	ug/L	N/A	30	17-MAR-21
Benzene			<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
Bromodic	hloromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21
Bromofor	m		<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21
Bromome	thane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
Carbon D	isulfide		<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21
Carbon te	trachloride		<0.20	<0.20	RPD-NA	ug/L	N/A	30	17-MAR-21
Chlorober	nzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
Chloroeth	ane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21

Report Date: 15-APR-21

Page 17 of 22

Workorder: L2566855

Thurber Engineering Ltd. (Oakville) Client: 2010 Winston Park Drive Unit 103 Oakville ON L6H 5R7

Contact: Rachel Bourassa

_

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R5402257								
WG3503430-4 DUP		WG3503430	-3					
Chloroform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21
Chloromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21
cis-1,2-Dichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
cis-1,3-Dichloropropene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	17-MAR-21
Dibromochloromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21
Dichlorodifluoromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21
Dichloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	17-MAR-21
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	17-MAR-21
Methyl Ethyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	17-MAR-21
Methyl Isobutyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	17-MAR-21
n-Hexane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
MTBE		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
o-Xylene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	17-MAR-21
Styrene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
Tetrachloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
Toluene		<0.40	<0.40	RPD-NA	ug/L	N/A	30	17-MAR-21
trans-1,2-Dichloroethylen	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
trans-1,3-Dichloropropen	e	<0.30	<0.30	RPD-NA	ug/L	N/A	30	17-MAR-21
Trichloroethylene		1.27	1.33		ug/L	4.6	30	17-MAR-21
Trichlorofluoromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21
Vinyl chloride		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
WG3503430-1 LCS								
1,1,1,2-Tetrachloroethan	е		94.4		%		70-130	17-MAR-21
1,1,2,2-Tetrachloroethan	е		106.1		%		70-130	17-MAR-21
1,1,1-Trichloroethane			109.2		%		70-130	17-MAR-21
1,1,2-Trichloroethane			89.9		%		70-130	17-MAR-21
1,2-Dibromoethane			84.9		%		70-130	17-MAR-21
1,1-Dichloroethane			105.7		%		70-130	17-MAR-21
1,1-Dichloroethylene			112.7		%		70-130	17-MAR-21
1,2-Dichlorobenzene			102.4		%		70-130	17-MAR-21
1,2-Dichloroethane			103.4		%		70-130	17-MAR-21
1,2-Dichloropropane			100.2		%		70-130	17-MAR-21

		Workorder	: L256685	55	Report Date: 1	5-APR-21		Page 18 of 22	2
Client:	Thurber Engineering I 2010 Winston Park D Oakville ON L6H 5R	Ltd. (Oakville) rive Unit 103 7							
Contact:	Rachel Bourassa								
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
VOC-ROU-HS	S-WT Water								
Batch	R5402257								
WG350343	30-1 LCS								
1,3-Dichlo	probenzene		105.7		%		70-130	17-MAR-21	
1,4-Dichlo	probenzene		108.8		%		70-130	17-MAR-21	
2-Hexano	ne		73.9		%		60-140	17-MAR-21	
Acetone			103.3		%		60-140	17-MAR-21	
Benzene			100.3		%		70-130	17-MAR-21	
Bromodic	hloromethane		111.9		%		70-130	17-MAR-21	
Bromoforr	n		91.5		%		70-130	17-MAR-21	
Bromome	thane		100.8		%		60-140	17-MAR-21	
Carbon Di	isulfide		105.6		%		70-130	17-MAR-21	
Carbon te	trachloride		115.9		%		70-130	17-MAR-21	
Chlorober	nzene		98.2		%		70-130	17-MAR-21	
Chloroetha	ane		117.6		%		70-130	17-MAR-21	
Chloroforr	n		110.5		%		70-130	17-MAR-21	
Chlorome	thane		101.8		%		60-140	17-MAR-21	
cis-1,2-Dio	chloroethylene		104.2		%		70-130	17-MAR-21	
cis-1,3-Dio	chloropropene		100.8		%		70-130	17-MAR-21	
Dibromoc	hloromethane		84.9		%		70-130	17-MAR-21	
Dichlorodi	fluoromethane		90.2		%		50-140	17-MAR-21	
Dichlorom	ethane		120.0		%		70-130	17-MAR-21	
Ethylbenz	ene		95.3		%		70-130	17-MAR-21	
m+p-Xyler	nes		99.7		%		70-130	17-MAR-21	
Methyl Eth	nyl Ketone		88.0		%		60-140	17-MAR-21	
Methyl Iso	butyl Ketone		84.0		%		50-150	17-MAR-21	
n-Hexane			104.7		%		70-130	17-MAR-21	
MTBE			103.2		%		70-130	17-MAR-21	
o-Xylene			101.5		%		70-130	17-MAR-21	
Styrene			88.4		%		70-130	17-MAR-21	
Tetrachlor	roethylene		98.4		%		70-130	17-MAR-21	
Toluene			95.3		%		70-130	17-MAR-21	
trans-1,2-l	Dichloroethylene		123.9		%		70-130	17-MAR-21	
trans-1,3-l	Dichloropropene		93.9		%		70-130	17-MAR-21	
Trichloroe	thylene		105.3		%		70-130	17-MAR-21	
Trichlorofl	uoromethane		114.1		%		60-140	17-MAR-21	

		Workorder	L256685	5	Report Date: 1	5-APR-21		Page 19 of 22
Client:	Thurber Engineering Lt 2010 Winston Park Dri Oakville ON L6H 5R7 Rachel Bourassa	td. (Oakville) ve Unit 103						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
	S-WT Water							
Batch	R5402257							
WG35034 Vinyl chlo	30-1 LCS ride		107.8		%		60-140	17-MAR-21
WG35034	30-2 MB etrachloroethane		<0.50		ua/L		0.5	17-MAR-21
1,1,2,2-Te	etrachloroethane		< 0.50		ug/L		0.5	17-MAR-21
1.1.1-Tric	hloroethane		< 0.50		ug/L		0.5	17-MAR-21
1,1,2-Tric	hloroethane		<0.50		ug/L		0.5	17-MAR-21
1,2-Dibro	moethane		<0.20		ug/L		0.2	17-MAR-21
1,1-Dichlo	proethane		<0.50	•	ug/L	*	0.5	17-MAR-21
1,1-Dichlo	proethylene		<0.50		ug/L		0.5	17-MAR-21
1,2-Dichlo	probenzene		<0.50		ug/L		0.5	17-MAR-21
1,2-Dichlo	proethane		<0.50		ug/L		0.5	17-MAR-21
1,2-Dichlo	propropane		<0.50		ug/L		0.5	17-MAR-21
1,3-Dichlo	probenzene		<0.50		ug/L		0.5	17-MAR-21
1,4-Dichlo	probenzene		<0.50		ug/L		0.5	17-MAR-21
2-Hexand	one		<20		ug/L		20	17-MAR-21
Acetone			<20		ug/L		20	17-MAR-21
Benzene			<0.50		ug/L		0.5	17-MAR-21
Bromodic	hloromethane		<1.0	•	ug/L		1	17-MAR-21
Bromofor	m		<1.0		ug/L		1	17-MAR-21
Bromome	ethane		<0.50		ug/L		0.5	17-MAR-21
Carbon D	isulfide		<1.0		ug/L		1	17-MAR-21
Carbon te	etrachloride		<0.20		ug/L		0.2	17-MAR-21
Chlorober	nzene		<0.50		ug/L		0.5	17-MAR-21
Chloroeth	ane		<1.0		ug/L		1	17-MAR-21
Chlorofor	m		<1.0		ug/L		1	17-MAR-21
Chlorome	ethane		<1.0		ug/L		1	17-MAR-21
cis-1,2-Di	chloroethylene		<0.50		ug/L		0.5	17-MAR-21
cis-1,3-Di	chloropropene		<0.30		ug/L		0.3	17-MAR-21
Dibromod	chloromethane		<1.0		ug/L		1	17-MAR-21
Dichlorod	ifluoromethane		<1.0		ug/L		1	17-MAR-21
Dichlorom	nethane		<2.0		ug/L		2	17-MAR-21
Ethylbenz	zene		<0.50		ug/L		0.5	17-MAR-21
m+p-Xyle	nes		<0.40		ug/L		0.4	17-MAR-21
Methyl Et	hyl Ketone		<20		ug/L		20	17-MAR-21

		Workorder	L2566855	5	Report Date: 15	-APR-21		Page 20 of 22
Client:	Thurber Engineering Ltd 2010 Winston Park Drive Oakville ON L6H 5R7	l. (Oakville) e Unit 103						
Contact:								
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS	WT Water							
Batch WG350343	R5402257 0-2 MB							
Methyl Isol	outyl Ketone		<20		ug/L		20	17-MAR-21
n-Hexane			<0.50		ug/L		0.5	17-MAR-21
MTBE			<0.50		ug/L		0.5	17-MAR-21
o-Xylene			<0.30		ug/L		0.3	17-MAR-21
Styrene			<0.50		ug/L		0.5	17-MAR-21
Tetrachloro	pethylene		<0.50		ug/L		0.5	17-MAR-21
Toluene			<0.40		ug/L		0.4	17-MAR-21
trans-1,2-D	Dichloroethylene		<0.50		ug/L		0.5	17-MAR-21
trans-1,3-D	Dichloropropene		<0.30		ug/L		0.3	17-MAR-21
Trichloroet	hylene		<0.50		ug/L		0.5	17-MAR-21
Trichloroflu	oromethane		<1.0		ug/L		1	17-MAR-21
Vinyl chlori	de		<0.50		ug/L		0.5	17-MAR-21
Surrogate:	1,4-Difluorobenzene		100.0		%		70-130	17-MAR-21
Surrogate:	4-Bromofluorobenzene	(88.3		%		70-130	17-MAR-21

Workorder: L2566855

Report Date: 15-APR-21

Client:	Thurber Engineering Ltd. (Oakville)
	2010 Winston Park Drive Unit 103
	Oakville ON L6H 5R7
Contact:	Rachel Bourassa

Legend:

_		
	Limit	ALS Control Limit (Data Quality Objectives)
	DUP	Duplicate
	RPD	Relative Percent Difference
	N/A	Not Available
	LCS	Laboratory Control Sample
	SRM	Standard Reference Material
	MS	Matrix Spike
	MSD	Matrix Spike Duplicate
	ADE	Average Desorption Efficiency
	MB	Method Blank
	IRM	Internal Reference Material
	CRM	Certified Reference Material
	CCV	Continuing Calibration Verification
	CVS	Calibration Verification Standard
	LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
RRQC	Refer to report remarks for information regarding this QC result.

		Worl	korder: L2566855	Report Date	e: 15-APF	R-21		
Client:	Thurber Engineering 2010 Winston Park I Oakville ON L6H 5I	l Ltd. (Oakville Drive Unit 103 R7	;)				Pa	ge 22 of 22
Contact:	Rachel Bourassa							
Hold Tim	ne Exceedances:							
		Sample						
ALS Pro	duct Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Bacterio	logical Tests							
E. Col	li							
		1	12-MAR-21 14:00	16-MAR-21 11:05	48	93	hours	EHTR
		2	12-MAR-21 13:00	16-MAR-21 11:05	48	94	hours	EHTR

Legend & Qualifier Definitions:

EHTR-FM:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT:	Exceeded ALS recommended hold time prior to analysis.
Rec. HT:	ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2566855 were received on 15-MAR-21 15:30.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

COC Number: 20 -

Page \

of

(

	0		T																				
Report Io	Contact and company name below will ap	pear on the final report		Reports / I	Recipients		<u> </u>		Tu	rnaro	und Ti	ime (1	TAT) R	eques	ted								
Company:	I hurber Engineering Ltd.	<u></u>	Select Report F	Select Report Format: PDF EXCEL EDD (DIGITAL) Routine [R] if received by 3pm M-F - no surcharges apply																			
Contact:				Merge QC/QCI Reports with COA 🗹 YES 📋 NO 📋 N/A 🔤 4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum																			
Phone.	Company address below will appear on the fi		Compare Resu	Compare Results to Criteria on Report - provide details below if box checked 2 day [P3] If received by 3pm M-F - 25% rush surcharge minimum					inimum (ALS use only)														
Ohren alt	2010 Mineten Bark Drive Suite 102		Select Distribut			FAX	E 10	day [E] i	f receiv	ved by	3pm N	1-F - 1	.00% ru	ish surc	harge n	ninimum							
Street:	2010 Winston Park Drive, Suite 103		Email 1 or Fax	rbourassa@thurb	er.ca		_ Sa ⊡fee	me day [s may ap	E2) if oply to	receive rush r	ed by 10 esuests	0am № ∶on we	1-S - 20 ekends.	00% rus . statuto	sh surch orv holic	arge. A lavs and	ddition 1 non-	loral					
City/Province:			Email 2	1.0			rol	utine test	S														
Postal Code.			Email 3					Date and Time Required for all E&P TATs:							10	4.14	<u>к</u> . 1	. a.,:	·. · .				
Invoice 10				Invoice R	ecipients					For tes	its that c	an not	be perfe	ormed a	ccording	to the `	TAT req	uested,	you will I	se contac	ed.		
	Copy of Invoice with Report YES	NO	Select Invoice	Distribution: 🔽 El	MAIL 🗌 MAIL [_ FAX								Ana	alysis	Requ	est						
Company:	I hurber Engineering Ltd.		Email 1 or Fax	accountingON@t	hurber.ca		18		In	ndicate	Filtere	d (F), F	Preservo	ed (P) c	or Filtere	ed and F	Preserv	/ed (F/F) below			B	(se
Contact:	Brojant Information		Email 2				ᆛ삝				ļ											Ĩ	ğ
	Froject Information	<u> </u>		and Gas Require	d Fields (client	use)	-Į₹		<u>e</u>			s l										ğ	e
Int # 307	1.0(AFE/Cost Center:		PO#		Ιż	8	۲, L			NES N									12	R	ŝ
	120	<u> </u>	Major/Minor Code:		Routing Code:		18	94IS	SS/			N GR		7							Ι¥	A GI	R I
	······		Requisitioner:				L L	3/PC	LS0	rs		SH		AP.			ച				Z	R R	A
			Location:		T			NZN	F	ETA		NZN		-W-			ETA				۵L ا	SŢ	E
ALS Lab Wor	rk Order # (lab use only):	66855	ALS Contact:	Amanda Overholster	Sampler:		BER	CL/F/	RVEC/F	BAL/M	тос	ILICA		+STOF			VED M				۳ ۲	DED	CTE
ALS Sample #	Sample Identification	n and/or Coordinates		Date	Time		1₹	L BR	9	NOI	NH3	ö		SAN			SOL				Ī	TEN	SP
(lab use only)	(This description will	appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	Ĩź	F	<u>ö</u>	ΡH DH	TP/I	S		- v		TSS	SIC				S	EX	SC
	BH06			12-Mar-21	14:00	GW	21	R	R	R	R	R		R		R	R				1		
	BH04D			12-Mar-21	13:00	GW	21	R	R	R	R	R		R		R	R			-	+		
																				-+-			
		· · · · · · · · · · · · · · · · · · ·	<u> </u>				1											\rightarrow	_	+	+		
					+		+	+						. <u> </u>						-+-	+	-	<u> </u>
																					4_		
	· · · · · · · · · · · · · · · · · · ·						<u> </u>													\perp			
																						1	
										-												1	
			··· ····				-													+	+	+	
	·			l		1	+					·····								-+	+		<u> </u>
		Notes / Specify	l imite des secult		<u> </u>	<u> </u>	+				Ļ	CAR			07.00						_L		
Drinking	Water (DW) Samples ¹ (client use)	Hotes / Specity	(E)	valuation by selecti (cel COC only)	ng trom arop-aov	vn below	Cooli	na Met	hod [.]	m	NONE	SAM	ICE						oniy)	1 0001			
Are samples take	en from a Regulated DW System?	PWQQ	Name	Storm	+ Sau ita		Subr	nission	Com	ment	siden	 tified		mole	Receiu	nt Noti	ficatio			<u></u>		IATED	
		Napanee		- Sanuta	7	Cool	er Cust	ody S	Reals	Intact					Samo		stody (Seale I	ntect.			NI/A	
Are samples for human consumption/ use?							INI	TIAL C	COOLE	RTEM	PERA	TURES	°C	<u>~</u>	Samp	Fil	NAL CO	OOLER '	TEMPER	ATURES	<u>с с</u>	N/A	
Π Y	YES 🗌 NO															1.		Ī	124			T	
	SHIPMENT RELEASE (client use)	1	NITIAL SHIPMEN	T RECEPTION (lab use only)	1					F	INAL	SHIP	MENT	REC	EPTIC)N (la	1.T buse	oniv)		<u> </u>	<u> </u>
Released by:	Date:	Time:	Received by:		Date:		Time	: 1	Rece	ived	by:		Ø		Date	1					Tim		<u> </u>
PEEEB TO BACK	er vourassa / 5/2	021 12:00	L										(\mathbf{M})	′	31	5b	1				15	3/1	
REFER TUBACK	TAGE FOR ALS LUCATIONS AND SAMPLIN	G INFORMATION		WHI	TE - LABORATOR	Y COPY YEL	LOW -	CLIENT	COP	Y												AGG 20	20 FRON

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Appendix F

Dewatering Estimates

Geologic Model Assumptions and K Calculations

Parameter	Units	Combined excavation of Water tanks, headworks buidling, tertiary/UV building
Initial Groundwater Elevation	masl	79.5
Ground Surface Elevation	masl	78.6
WT below surface		11.8
Bottom of Excavation Assumed for Dewatering	masl	71.7
Target Groundwater Elevation	masl	70.7
Bottom of Extraction Interval	masl	67.7
Max Drawdowns		8.8
Geologic Unit 1		Overburden
K Unit 1	m/s	5.5E-06
Elevation of Bottom of Unit 1	masl	72.1
		6.5
Saturated Thickness Unit 1	m	6.5
Geologic Unit 2		Limestone
K Unit 2	m/s	2.5E-06
Elevation of Bottom of Unit 2	masl	67.5
		4.7
Saturated Thickness Unit 2	m	4.4
Weighted Average K for Q Estimate	m/s	4.3E-06
Largest K for ROI Estimate	m/s	5.5E-06
Table of Geologic Model Units	K (ma (m)	

Geologic Units	K (m/s)	
Silty Clay Overburden	5.50E-06	
Limestone bedrock	2.50E-06	

Dewatering Estimates for Non-Watertight Shoring Walls for combined excavation of water tanks, headworks building, tertiary/UV building for Background Only

Parameter	Units	Combined excavation of Water tanks, headworks buidling, tertiary/UV building					
Weighted Average K for Q Estimate	m/s	1 35-06					
(see separate calculation table)	11/5	4.52-00					
Hydraulic Conductivity converted to m/day	m/day	3.7E-01					
Input height of groundwater pressure (H)	m	11.8					
Input dewatering height (h)	m	3.0					
Input length of excavation (x, a)	m	115					
Input width of excavation (b)	m	50					
Input/calculate radius of trench (rw or rs)	m	25.0					
Length to width ratio	unitless	2.3					
Net water table lowering	m	8.8					
Equation Type		Trench					
Radii of Influence							
Sichardt Equation (Ro based on K, H, h)	m	FF					
Based on Weighted Average K for Q Calc	111	22					
Ro = Sichardt + (rw or rs)	m	80					
Distance to Recharge Boundary	m	40					
Calculated Flow Rate							
Base groundwater flow	L/day	461,000					
Partial Penetration Factor	unitless	1.00					
Safety factor on groundwater flow	unitless	3					
Groundwater flow with safety factor	L/day	1,383,000					
Rainfall entering excavation	mm	50					
Duration to remove rainfall	hours	24					
Flow rate to remove rainfall	L/day	288,000					
	-						
Budgeted peak flow rate	L/day	1,671,000					
=	L/s	19.3					
=	gal/min	255					

Parameter	Units	Combined excavation of Water tanks, headworks buidling, tertiary/UV building
Geologic Unit to Dewater		Limestone
Input Hydraulic Conductivity in m/s (K)	m/s	2.5E-06
Hydraulic Conductivity converted to m/day	m/day	2.2E-01
Input height of groundwater pressure (H)	m	11.8
Input dewatering height (h)	m	3.0
Net depressurization	m	8.8
Input length of excavation (x, a)	m	115
Input width of excavation (b)	m	50
Elevation of top of extraction interval	m asl	70.7
Elevation of bottom of extraction interval	m asl	67.7
Extraction interval thickness	m	3.0
Aquifer thickness	m	3.0
Length to width ratio	unitless	2.3
Equation type		Trench
Input/calculate radius of trench (rw or rs)	m	25.0
Radii of Influence		
Sichardt Equation (Ro based on K, H, h)	m	42
Distance to Recharge Boundary	m	40
Rounded ROI for Impact Assessment	m	40
Calculated Flow Rate		
Base groundwater flow	L/day	109,000
Partial Penetration Factor	unitless	1.00
Safety factor on groundwater flow	unitless	3
Groundwater flow with safety factor	L/day	327,000
Rainfall entering excavation, if applicable	mm	50
Duration to remove rainfall	hours	24
Flow rate to remove rainfall	L/day	288,000
Budgeted peak flow rate	L/day	615,000
=	L/s	7.1
=	gal/min	93.9

Dewatering Estimates for Watertight Shoring Walls for combined excavation of water tanks, headworks building, tertiary/UV building

Flow rate estimates rounded to nearest 1,000 L/day, with minimum of 1,000 L/day for base flc

Parameter	Units	Maintenace Building	Outfall Pipe
Closest Boreholes / Monitoring wells	-	06, 07, 08	10, 11, 12
Ground surface elevation at proposed structure		78.5	76.4
Geologic Unit to Dewater		Overburden	Overburden
10% diameter (D10)	mm m/s	5 55-06	5 55-06
Hydraulic Conductivity converted to m/day	m/day	4 85-01	J.SE 00
Input static water level elevation	m	79 5	79 5
Input excavation base elevation	m	77.0	74.4
Input bottom of aquifer elevation	m	76.0	73.4
Input height of groundwater pressure (H)	m	3.5	6.1
Input dewatering height (h)	m	0	0
Input length of excavation (x, a)	m	110	55
Input width of excavation (b)	m	2	2
Input/calculate radius of trench (rw or rs)	m	1	1
Length to width ratio	unitless	55.0	27.5
Net water table lowering	m	3.5	6.1
Equation Type		Trench	Trench
Radii of Influence			
Sichardt Equation (Ro based on K, H, h)	m	24.7	42.6
Ro = Sichardt + (rw or rs)	m	26	44
Distance to Recharge Boundary	m	78	25
Calculated Flow Rate			
Base groundwater flow	L/day	31,000	55,000
Safety factor on groundwater flow	unitless	3	3
Groundwater flow with safety factor	L/day	93,000	165,000
Rainfall entering excavation	mm	50	50
Duration to remove rainfall	hours	24	24
Flow rate to remove rainfall	L/day	11,000	6,000
Budgeted peak flow rate	L/day	104,000	171,000
=	L/s	1.2	2.0
=	gal/min	16	26

Dewatering Calculations for Maintenace Building and Outfall Pipe Excavation (no watertight shoring).

Flow rate estimates rounded to nearest 1,000 L/day.

Theory and Formulae

Trench flow in unconfined aquifer

Use this equation when a/b > 1.5. Equation 4.0

$$Q = \frac{\pi K (H^2 - h^2)}{\ln R_0 / r_w} + 2 \left[\frac{x K (H^2 - h^2)}{2L} \right]$$

Equation 4.1

a+b $r_{w} = -$

Figure 4.2 (Driscoll, 1986)

Note: L and Ro are the same distance

*Note: H, h measurements are relative to base of active groundwater

rw can be calculated (Eqn 4.1) or input = 1/2 the width of the trench.

For trench eqn estimate better if value is input as 1/2 the width of trench,

Rw must be smaller than Ro.

Rs for trench can be distance from centre line of trench to line of dewatering points.

Radial flow to well in unconfined aquifer (Dupuit Equation):

$$Q = \frac{\pi K \left(H^2 - h^2\right)}{\ln R_0 / r_w}$$

Steady-state flow in confined aquifer

Flow per well	Q = 2.73 K b (H - h)/log(R/r)
Source:	Driscoll, Fletcher G. (1986). <i>Groundwater and Wells</i> (2nd ed). Minnesota: Johnson Filtration Systems Inc.

Radius of Influece

Ro is determined by the Sichardt Equation: $Ro = 3000(H-hw)K^{0.5}$ when K is in m/s

Alternative equation by Bear (Bear, J., 1979. Hydraulics of Groundwater, McGraw-Hill, New York, 569p) R₀=1.5(Tt/S)^{0.5} where T is transmissivity in m^2/day , t is pumping duration in days. R_o will be in metres.

Ro equals sichardt equatior FROM STAN DENHOED

add rw to Ro calculated from Sichardt's euquation rw as indicated in formulae

Hydraulic Conductivity and Grain Size

 $K = D10^2$, Hazen, where D10 = grain size diameter for 10% passing (smallest 10%) in mm and K in cm/s

$$K = \left(\frac{\rho g}{\mu}\right) \left[\frac{n^3}{(1-n)^2}\right] \left(\frac{d_{10}^2}{180}\right)$$

Kozeny Carman equation

Image from groundwatersoftware.com

Partial Penetration Factor (F) Kozeny 1933 $F = L/b^*(1+\cos(PI^*L/(2b))^*\operatorname{sqrt}(r/2L))$ where:

L = Vertical length from which water is being extracted

r = single well radius

OR

b = saturated aquifer thickness

L/r must be > 30 L/b must be < 0.5

Assumption made that same factor may be applied to equivalent well and trench equations.

St. Paul,