

Draft Hydrogeological Report – Revision 1 Napanee Water Pollution Control Plant Expansion & Upgrades 300 Water Street West Napanee, Ontario

Client Name: EVB Engineering on behalf of the Town of Greater Napanee

Date: December 20, 2024

File: 40745

TABLE OF CONTENTS

1.	INTR	RODUCTION	1
2.	BAC	KGROUND REVIEW	3
	2.1	Site Description	3
	2.2	Site Physiographic, Geologic and Hydrogeologic Settings	4
	2.3	Environmental Setting	4
	2.4	MECP Well Records Review and Status	5
	2.5	Existing Water Taking Permits	
	2.6	Previous Investigation	5
3.	INVE	ESTIGATION PROCEDURES	
	3.1	Geotechnical Drilling and Testing	6
	3.2	Monitoring Well Installation	
	3.3	Water Level Monitoring	9
	3.4	Ground Water Sampling and Chemical Analysis	9
	3.5	Single Well Response Tests	10
4.	TES	TING RESULTS AND ANALYSIS	11
	4.1	Water Level Monitoring	11
	4.2	Hydraulic Conductivity	13
	4.3	Groundwater Quality Results	14
5.	DEW	/ATERING ASSESSMENT	15
	5.1	Construction Dewatering	15
	5.2	Permanent Drainage	20
6.	IMP <i>A</i>	ACT ASSESSMENT	21
	6.1	Geotechnical Impacts	22
	6.2	Impacts to Surface Water and Natural Environment	22
	6.3	Impacts to Water Well Users	23
	6.4	Other Potential Impacts	24
7.	CON	ICLUSIONS AND RECOMMENDATIONS	24
	7.1	Category 3 Permit To Take Water	24
	7.2	Discharge of Groundwater	25
	7.3	Additional Recommendations	26

7.4	Proposed Monitoring Plan and Contingency Plan	26
7.5	Permanent Drainage and Discharge	27
8. CLO	SURE	28
9. REF	ERENCES	29
STATEMEN	IT OF LIMITATIONS AND CONDITIONS	
	IN-TEXT TABLES	
Table 3-1: E	Borehole Details	6
Table 3-2: N	Monitoring Well Details	8
Table 4-1: 0	Groundwater Levels and Observations	11
Table 4-2: S	Summary of In-Situ Hydraulic Conductivity Test Results	13
Table 5-1: S	Summary of Excavations and Dewatering Conditions	18
	Construction Dewatering Estimate	
Table 5-3: F	Permanent Drainage Estimates	21
Table 7-1: N	Monitoring and Contingency Plan Applicability	27
	FIGURES	
Ciaura 1		
Figure 1	SITE LOCATION PLAN	
Figure 2	TOPOGRAPHY	
Figure 3	PHYSIOGRAPY SURFICIAL GEOLOGY	
Figure 4 Figure 5	BEDROCK GEOLOGY	
Figure 5	MECP WELL RECORDS	
Figure 7	NATURAL FEATURES	
Figure 8	MONITORING WELL LOCATIONS	
Figure 9	ZONE OF INFLUENCE	
9		
	APPENDICES	
Appendix A	Drawings	
Appendix B	MECP Well Records	
Appendix C	Record of Borehole Sheets	
Appendix D	Single Well Response Test Results	
Appendix E	Groundwater Analytical Results and Certificates of Analysis	
Appendix F	Dewatering Estimates	
Appendix G	Monitoring and Contingency Plan	

Client: EVB Engineering on behalf of the Town of Greater Napanee File No.: 40745

Page: ii of ii

December 20, 2024

1. INTRODUCTION

This report presents the results of a hydrogeological investigation completed by Thurber Engineering Ltd. (Thurber) in conjunction with geotechnical investigation for the design and construction of upgrades at the Napanee Water Pollution Control Plant (WPCP). The project is located southwest of the intersection of Water Street W. and Hessford Street, extending to the Napanee River.

It is noted that a previous draft version of this report was issued on August 18, 2021 to a different design team. Based on that information and the original design, a new maintenance garage is currently under construction on the southwest side of the property. Subsequently, a new design team comprised of EVB Engineering (EVB) and CIMA+ have been retained by the Town to complete the design of the remaining proposed upgrades, which have been modified since Thurber's original draft report was submitted. In addition, new geophysical testing was carried out for the project in November 2023, and supplemental geotechnical and hydrogeological investigations were carried out February 2024. This current version of Thurber's geotechnical report has been prepared specifically for the current design team (EVB and CIMA+) in regard to the proposed upgrades.

The Hydrogeologic Report was provided to establish baseline hydrogeological conditions, assess groundwater conditions, evaluate construction dewatering requirements, assess the potential impacts of construction on the local groundwater quality and quantity, determine water taking permit requirements, and develop a groundwater monitoring program for the proposed upgrades to the WPCP.

The potential facility upgrades that are subject to hydrogeological assessment include the following:

- A single storey Multi-Use Building including headworks, electrical and mechanical rooms, lab, and offices. The footprint of the building will be approximately 22 m wide and 32 m long. The building will have two floor slab levels, with the office are having a finished floor Elevation of 81.76 m and the headworks area having a finished floor elevation of 80.90 m. A vortex tank within the headworks will have a founding elevation of 76.03 m.
- New Influent Buffer Tanks and Sludge Buffer Tanks adjoining the headworks building to the east and south, respectively. The footprint of the Influent Buffer Tanks will be approximately 9 m wide and 17 m long, and the Sludge Buffer Tanks will be approximately 6 m wide and 18 m long. The Influent Buffer Tank and Sludge Buffer Tank will be founded below grade on raft slabs with founding Elevations of 71.70 m and 73.90 m, respectively.

Client: EVB Engineering on behalf of the Town of Greater Napanee December 20, 2024
File No.: 40745
Page: 1 of 29

- Three AGS Reactor Tanks with an approximate width of 33 m and total length of 54.2 m.
 The tanks will be founded below grade on a raft slab with a founding Elevation of 75.45 m.
- A Post-Equalization Tank adjoining the AGS Tanks. The tank will be approximately 9 m wide and 29 m long. The tank will be founded on a raft slab with a founding Elevation of 77.84 m. A pad of lean concrete will be provided beneath the raft slab to an Elevation of 75.45 m (equal to the founding elevation of the AGS Tanks).
- A new two-storey Operation Building including solids thickener, AGS controls, tanks access, biogas boiler, pump gallery, piping, electrical and mechanical. The building will be approximately 14 m wide and 39 m long. The building will have a basement level and will be founded on a raft slab with a founding Elevation of 76.4 m.
- A single storey Tertiary / Ultraviolet Disinfection Building with flocculation tanks. The footprint of the building will be approximately 16 m wide and 27 m long. The building will have a basement level with raft slab founding Elevation of 75.068 m.
- A sanitary pumping station to the east of the tertiary building. The wet well for the pumping station will be approximately 2.4 m wide and 2.4 m long, with a base Elevation of approximately 73.0 m.
- An Outfall Pipe, service piping and duct banks.

A geotechnical investigation was completed concurrently for this project. The results of geotechnical investigation and recommendations should be read in conjunction with this report and is presented under a separate cover entitled:

• Geotechnical Design Report – Revision 1, Napanee Water Pollution Control Plant Expansion & Upgrades, 300 Water Street West, Napanee, Ontario by Thurber Engineering Ltd. dated June 5, 2024.

The hydrogeological components of the investigation included the following tasks:

- Conduct background review within 500 m of the site (the Study Area) including the setting,
 Ministry of the Environment, Conservation and Parks (MECP) well records, geological maps, relevant existing reports, and proposed design drawings as available.
- Install nine monitoring wells within select boreholes of the concurrent geotechnical investigation and develop them prior to further testing.

Client: EVB Engineering on behalf of the Town of Greater Napanee December 20, 2024
File No.: 40745
Page: 2 of 29

- Collect multiple rounds of groundwater level readings in the monitoring wells installed during the concurrent geotechnical investigation.
- Conduct in-situ hydraulic testing in all monitoring wells.
- Collect two groundwater samples from selected monitoring wells and testing in accordance with the Provincial Water Quality Objectives (PWQOs) and Greater Napanee Sewer-Use By-Law with respect to storm and sanitary sewers.
- Hydrogeological analysis and reporting, including estimated water taking rates, radius of influence, potential impacts to water users, structures, the natural environment including surface water features, potential existing soil or groundwater contamination, potential mitigation measures as well as a monitoring plan and contingency plan, and assessment of water taking permitting needs.

It is a condition of this report that Thurber's performance of its professional services is subject to the attached Statement of Limitations and Conditions.

BACKGROUND REVIEW 2.

2.1 **Site Description**

The project site is located at 300 Water Street West, Napanee, Ontario (the Site). The Site is bounded by Water Street West to the north and the Napanee River to the south. The west and east sides of the Site are bounded by the Riverine Retirement Home property line and Hessford St, respectively. The Study Area for the hydrogeological investigation was defined as 500 m from the Site.

The ground surface of the Site slopes towards the river to the south and ranges from approximately Elevation 85 m in the north to 75 m in the south of the Site. The Study Area lies within the Napanee River Valley and the valley wall rises north of the Site to approximately 100 m elevation.

In general, the land use surrounding the Site is residential or vacant. A retirement home lies to the west of the Site, while homes, a restaurant, and an apartment building are north and east of the Site. The Site itself is industrial and municipal wastewater treatment is conducted on Site.

A plan illustrating the Site and the proposed upgrades are shown on Drawings 40745-1 in Appendix A. The Site and Study Area is shown on Figure 1 and the topography of the Study Area is shown on Figure 2.

December 20, 2024 Client: EVB Engineering on behalf of the Town of Greater Napanee File No.: 40745 Page: 3 of 29

2.2 Site Physiographic, Geologic and Hydrogeologic Settings

Based on the information in *The Physiography of Southern Ontario* by Chapman and Putnam (1984), the Site is located within the Napanee Plain physiographic region. The Napanee Plain is characterized by flat-to-undulating limestone with little overburden, except for within stream valleys and along the Napanee River and Salmon River Valleys, which may contain a variety of alluvial deposits. The region is characterized as a clay plain, with fine textured glaciolacustrine deposits of silt and clay with minor sands and gravel. The Site is situated on limestone plains and clay plains physiograph landforms. The physiographic regions of the Study Area are shown on Figure 3.

The surficial geology of the Study Area consists primarily of glaciomarine deposits of massive to laminated silt and clays with minor sand and gravel (OGS, 2010). The surficial geology of the Study Area is shown on Figure 4.

The predominant bedrock of the Study Area consists of limestone with minor shale partings of the Bobcaygeon Formation (OGS, 2011). This formation ranges from micritic limestone to a coarse grainstone with abundant reworked clasts and calcareous fossils. Locally, the Bobcaygeon Formation is bounded by a fault along the Napanee River, which runs along the south of the Site. South of the fault, the Study Area is situated on limestone and dolostone of the Gull River Formation. The Site is completely situated on the Bobcaygeon Formation. The bedrock geology of the Study Area is shown on Figure 5.

2.3 Environmental Setting

Natural features in the vicinity of the Study Area include the following:

- a) The Napanee River is located directly south of the Site and flows in a general southwesterly direction.
- b) Wetlands classified as Provincially Significant are located along the north and south banks of the Napanee River, referred to as the Lower Napanee River Complex. Wetlands near the north bank overlap with the southern boundary of the Site.
- c) Multiple wooded areas are located within the Study Area. The closest wooded area to the Site is located approximately 100 m west of the Site.

The natural features located within the Study Area and Site are illustrated on Figure 7.

The Study Area is located within the Lower Napanee Subwatershed of the Napanee Region Watershed and is located within land regulated by Quinte Conservation. The Study Area is located in the Quinte Source Protection Area (SPA). The Study Area lies within an Intake Protection Zone

Client: EVB Engineering on behalf of the Town of Greater Napanee December 20, 2024
File No.: 40745
Page: 4 of 29

3. An Intake Protection Zone refers to an area of land and water around a municipal intake pipe that collects surface water for drinking water purposes. Intake Protection Zone 3 refers to an area where contaminants could reach the potable water intake pipe during and immediately after a large precipitation event. The Study Area is not located within the designated areas of the Oak Ridges Moraine Conservation Act or Niagara Escarpment Planning and Development Act. The Study Area is not within a wellhead protection area. The Study Area is located within a Highly Vulnerable Aquifer but is not located within a Significant Groundwater Recharge Area.

2.4 MECP Well Records Review and Status

The available records of wells within a 500 m radius of the Site were obtained from the MECP's online well record database in February 2024. These well records include all recorded wells regardless of their current status.

In total, 36 recorded wells were located within the 500 m radius Study Area. The approximate locations of the wells are shown on Figure 6. A summary of well record details is provided in Table B1 of Appendix B.

There were 25 well records recorded as water supply wells. For the remaining records, six records were for monitoring and test holes, test holes, or observation wells, one well record is recorded as abandoned, and four records have an unknown status.

2.5 Existing Water Taking Permits

A search of MECP's Permit to Take Water mapping application in December 2024 indicated no active permits were located within the Study Area. A search of MECP's Environmental Activity and Sector Registry (EASR) mapping application in December 2024 found no water taking registrations for the purpose of construction dewatering within the Study Area.

2.6 Previous Investigation

Three previous investigations have been completed on the WPCP Site were made available for review and documented in the following reports:

- Geotechnical Investigation (DRAFT), Upgrades to Wastewater Treatment Plant, 300
 Water Street West, Napanee, Ontario, by GHD dated June 21, 2018.
- Geotechnical Investigation, Proposed Tank Installation, Napanee Plant, 300 Water Street by Inspec-Sol Inc, dated November 15, 1999.
- Geotechnical Investigation, Stage 2 Contract Soil Investigation, by Site Investigation Services dated October 5, 1977.

Client: EVB Engineering on behalf of the Town of Greater Napanee December 20, 2024
File No.: 40745
Page: 5 of 29

A total of 31 sampled boreholes were drilled as part of the referenced geotechnical investigations above. All boreholes from these investigations were reviewed and Boreholes BH1-17, BH13-17, BH14-17, MW15-17, BH16-17, MW17-17, and BH19-17 from the GHD investigation were considered most relevant to the current works and have been included in the associated geotechnical report, along with the borehole location drawing. The previous investigations were used to provide supplemental bedrock and groundwater information for design and are noted in the summarized bedrock physical properties.

3. INVESTIGATION PROCEDURES

3.1 Geotechnical Drilling and Testing

The concurrent geotechnical field investigation was carried out in two stages, with the first stage occurring between February 22 and March 2, 2021 and the second stage occurring between February 20 and 21, 2024. In total, the two stages included the installation of 24 sampled geotechnical boreholes (BH01 through BH14, BH19 through BH26, MW24-101, and BH24-301), four unsampled auger probes (BH15, BH16, BH17, BH18), and six cone penetration tests (CPTu) tests (CPT24-201, through CPT24-206).

A summary of the borehole, auger probe, and CPT details are provided in Table 3.1. Borehole details are also provided on the Record of Borehole sheets included in Appendix C. The approximate locations of the boreholes, auger probes, and CPTs are shown on the Testhole Location Plan, Drawing No. 40745-1 provided in Appendix A.

Table 3-1: Borehole Details

Testhole ID	Northing (m)	Easting (m)	Ground Surface Elev. (m)	Termination Depth (m)	Termination Elev. (m)	MW Installed?
BH-01	4 900 363.3	343 393.4	80.9	10.2	70.7	N
BH-02	4 900 376.0	343 427.4	79.0	8.8	70.2	Υ
BH-03	4 900 314.4	343 421.8	76.4	10.3	66.2	Υ
BH-04	4 900 313.1	343 466.0	77.2	10.2	67.0	Υ
BH-05	4 900 278.5	343 451.1	76.3	11.6	64.7	N
BH-06	4 900 323.2	343 358.1	78.5	5.8	72.7	Υ
BH-07	4 900 335.5	343 376.2	78.5	5.9	72.6	N
BH-08	4 900 312.0	343 386.0	77.2	6.5	70.6	N
BH-09	4 900 314.9	343 400.5	76.8	2.9	73.9	N
BH-10	4 900 286.0	343 480.9	76.5	3.7	72.9	N
BH-11	4 900 293.0	343 503.0	76.4	3.7	72.7	Υ
BH-12	4 900 302.0	343 528.0	76.4	3.7	72.7	N

Client: EVB Engineering on behalf of the Town of Greater Napanee

File No.: 40745

Testhole ID	Northing (m)	Easting (m)	Ground Surface Elev. (m)	Termination Depth (m)	Termination Elev. (m)	MW Installed?
BH-13	4 900 388.5	343 400.4	81.7	3.7	78.1	N
BH-14	4 900 385.9	343 445.9	80.4	3.7	76.7	N
BH-15*	4 900 334.4	343 401.2	77.7	6.3	71.4	N
BH-16*	4 900 348.3	343 451.0	78.2	7.8	70.4	N
BH-17*	4 900 301.2	343 445.0	76.5	9.8	66.7	N
BH-18*	4 900 305.4	343 483.5	76.9	11.3	65.6	N
BH-19	4 900 314.3	343 501.3	77.5	5.2	72.4	N
BH-20	4 900 375.0	343 378.0	80.0	2.9	77.1	N
BH-21	4 900 395.1	343 423.1	80.5	2.9	77.6	N
BH-22	4 900 334.8	343 465.,3	77.7	3.7	74.1	N
BH-23	4 900 302.4	343 359.7	77.5	2.9	74.7	N
BH-24	4 900 283.0	343 428.0	75.9	2.9	73.1	N
BH-25	4 900 364.7	343 500.3	77.7	8.2	69.5	N
BH-26	4 900 345.9	343 514.1	77.4	8.2	69.2	N
MW24-101	4 900 343.9	343 412.5	79.0	9.8	69.2	Y
BH24-301	4 900 313.0	343 462.9	77.2	8.5	68.7	N
CPT24-201	4 900 310.8	343 463.9	77.1	8.7	68.4	N
CPT24-202	4 900 284.2	343 464.4	76.8	10.8	66.0	N
CPT24-203	4 900 311.8	343 432.2	76.5	7.2	69.3	N
CPT24-204	4 900 328.9	343 439.0	77.9	7.9	70.0	N
CPT24-205	4 900 352.9	343 439.6	78.3	7.3	71.0	N
CPT24-206	4 900 344.1	343 460.1	78.0	8.5	69.5	N

Notes: MW – Monitoring well

The testhole locations were established in the field by Thurber using a portable GPS receiver and verified relative to existing Site features. All testhole locations were cleared of utilities prior to commencement of drilling. The testholes were repositioned as necessary in consideration of surface features, underground utilities, and overhead obstructions. Borehole location coordinates are presented in the Universal Transverse Mercator (UTM) system (NAD83, CSRS 2010.0).

The boreholes and auger probes were advanced using hollow stem and solid stem augers, powered by track mounted CME 55 drill rigs operated by GET Drilling. Boreholes MW24-101 and BH24-301 were advanced using mud rotary techniques powered by a Gtech GT8 drill rig operated by ConeTec Investigations Ltd. Within the boreholes, soil samples were obtained at selected intervals using a 50 mm outside diameter split-spoon sampler driven in conjunction with the Standard Penetration Test (SPT). During the 2021 investigation, in-situ vane shear testing was

Client: EVB Engineering on behalf of the Town of Greater Napanee

December 20, 2024 File No.: 40745 Page: 7 of 29

^{* -} Auger probes to determine approximate bedrock depth.

conducted in the cohesive deposits at selected locations/depths with an MTO N-sized vane. During the 2024 investigation, three Nilcon vane tests were carried out at selected depths in BH24-301. Thin-Walled (Shelby) tube samples were pushed and retrieved at various elevations in the boreholes to obtain relatively undisturbed cohesive soil samples for further laboratory testing. Bedrock core samples were recovered in BH-01, BH-02, BH-03 and MW24-101 using NQ or HQ size diamond drill core barrels.

The field investigation was carried out under the full-time supervision of Thurber technical staff. Soil samples were identified, placed in labelled containers, logged in the field, and transported back to Thurber's laboratory for further visual examination and laboratory testing, including moisture content, grain size distribution testing, and Atterberg limits. Where soil samples were selected for analytical testing, one portion of each soil sample was placed into a laboratory-supplied labelled glass jar or vial and stored on ice in an insulated cooler to maintain a cool environment for possible analytical testing. A second portion of the sample was placed inside a labelled plastic bag for screening of headspace soil vapours, visual assessment, classification of the soils, and additional geotechnical laboratory testing. The recovered rock core samples were described and photographed in the field, packaged in core boxes, and transported back to Thurber's Oakville laboratory for further examination and testing.

3.2 Monitoring Well Installation

Monitoring wells were installed in selected boreholes to permit monitoring of the groundwater levels at the Site, to allow for water quality samples to be collected and submitted for analytical testing and to allow for single well response testing. The monitoring wells were installed by an MECP licensed well technician in accordance with O.Reg. 903, as amended. The monitoring wells consisted of 50 mm diameter PVC pipe with a slotted screen sealed at a selected depth within the borehole. The annular space of the borehole around the screen was backfilled with clean filter sand covered by a bentonite seal. The installation details are summarized in Table 3.2 below.

Table 3-2: Monitoring Well Details

Borehole/	GS	_	ing Well ip	Slotted	Mid-Screen	Mid- Screen	Screened
Monitoring Well No.	Elev. (m)	Depth (m)	Elev. (m)	Screen Length (m)	Depth (m)	Elev. (m)	Material
02 Shallow	79.0	5.7	73.3	3.0	4.2	74.8	Silty Clay
02 Deep	79.0	8.8	70.2	2.4	7.6	71.4	Bedrock
03 Shallow	76.4	7.2	69.2	3.0	5.7	70.7	Silty Clay / Silt
03 Deep	7 0. 1	10.3	66.2	2.4	9.1	67.4	Bedrock

Client: EVB Engineering on behalf of the Town of Greater Napanee

File No.: 40745

December 20, 2024

Borehole/	GS		ing Well ip	Slotted	Mid-Screen	Mid- Screen	Screened
Monitoring Well No.	Elev. (m)	Depth (m)	Elev. (m)	Screen Length (m)	Depth (m)	Elev. (m)	Material
04 Shallow	77.2	6.1	71.1	3.0	4.6	72.6	Silty Clay
04 Deep	11.2	10.2	67.0	3.0	8.7	68.5	Silty Clay
06	78.5	5.8	72.7	3.0	4.3	74.2	Silty Clay / Silty Sand
11	76.4	3.1	73.3	1.5	2.3	74.1	Sand / Silty Clay
MW24-101	79.0	9.4	69.6	1.5	8.7	70.4	Bedrock

Notes: GS - Ground surface

The remaining boreholes were backfilled with bentonite to the ground surface in general accordance with O.Reg. 903, as amended.

3.3 Water Level Monitoring

The groundwater conditions at the borehole locations were assessed during drilling by visual examination of the soil, the sampler and the drill rods as the samples were retrieved and when appropriate by measurement of the water level in the open borehole.

Water levels in the monitoring wells were measured using a water level meter upon completion of the monitoring well installations and on subsequent dates, as provided in Table 4-1 in Section 4-1.

3.4 Ground Water Sampling and Chemical Analysis

Groundwater quality samples were collected from two selected wells for the purpose of considering disposal options and potential treatment needs at a preliminary level. The results obtained herein were representative of the water sampled from the selected wells at the time of sampling and provide a general understanding of groundwater quality under those conditions; however, the water quality may vary significantly from the results obtained based on location, time, meteorological conditions, and in particular based on construction and dewatering methods. The extent of suspended solids in the groundwater or in water that is collected during construction dewatering (for example from a sump in an open excavation) will significantly affect the concentrations of many parameters that may be regulated based on discharge location, particularly metals. The value of testing groundwater quality during the investigation is primarily to identify the types of contaminants that may need to be managed, the extent to which they are dissolved and therefore unlikely to be filtered by physical means alone, and the presence of

Client: EVB Engineering on behalf of the Town of Greater Napanee
File No.: 40745

Page: 9 of 29

anthropogenic contaminants that are listed in the given discharge criteria that may require specific treatment.

The monitoring wells were developed prior to sampling to remove excess sediment that may have entered the well during installation, to increase the representativeness of the natural groundwater in the well and to improve the transmissivity of the sand pack and well screen. Prior to any sampling or in-situ testing, the wells were purged dry, or until at least three well volumes had been removed and general chemistry parameters (pH, temperature and conductivity) were monitored with a hand-held meter to ensure consistency in addition to visual observations of turbidity.

Groundwater quality samples were collected from two monitoring wells installed in the boreholes listed in Table 3-2 (04 Deep and 06). The groundwater samples were collected using a dedicated bailer and, where required, a dedicated inline disposable 0.45 µm metals filter. The samples were collected into prepared laboratory sample bottles, stored in an insulated cooler with ice to keep the samples cool for transportation to Thurber's laboratory and subsequent submission to ALS Laboratory Group (ALS) for analysis. ALS is a Canadian Association for Laboratory Accreditation (CALA) accredited laboratory.

The selected groundwater samples were submitted for analysis for metals and inorganics, major anions and cations, general chemistry parameters, and parameters required for the Greater Napanee Sewer-Use By-law (No. 2012-39). The samples were analyzed and compared to the PWQOs and interim PWQOs, and Greater Napanee Sewer-Use By-law (No. 2012-39).

In addition, field-filtered metals samples were collected from each sampled monitoring well and submitted in comparison to PWQO metal limits. The filtered samples are a preliminary measurement of dissolved (based on a 0.45-micron filter), and assumedly not physically filterable, metal parameters.

3.5 Single Well Response Tests

Single well response tests ("slug" tests) were carried out in the nine 50-mm diameter wells installed in the geotechnical boreholes. The wells were screened in various materials including, silty clay, sand, silt some sand, and limestone bedrock. A summary of the tests completed, and the depths and screened materials is presented in Table 4-2. Results of the single well response tests are included in Appendix D.

The tests were completed using the following method:

• In advance of conducting the slug tests, the monitoring wells were developed and purged, as noted above.

Client: EVB Engineering on behalf of the Town of Greater Napanee December 20, 2024 File No.: 40745 Page: 10 of 29

- Once the water level returned to a stabilized level, the static water level was measured and recorded, and a datalogger was inserted into the well below the water level. The datalogger was set to record water levels every 0.125 - 1 seconds, depending on the anticipated rate of recovery of each well.
- A slug of groundwater was removed from the well with a dedicated bailer for each well to induce a change in hydraulic head (rising head test).
- Manual and electronic measurements were recorded until the water level in the well recovered sufficiently.
- Manual measurements were compared to electronic measurements for quality control of the data.

4. TESTING RESULTS AND ANALYSIS

4.1 Water Level Monitoring

A summary of the groundwater levels recorded in the monitoring wells is provided in Table 4-1. Groundwater levels that are not under the influence of water taking or dewatering will fluctuate naturally over time, as a function of a number of factors including intensity, duration, and frequency of precipitation events as well as temperatures, which affect precipitation type and timing of snowmelt and accumulation.

Table 4-1: Groundwater Levels and Observations

Borehole / Monitoring Well No	Mid Screen Depth (m)	Mid Screen Elev. (m)	Screened Material Date		WL Depth (m)	WL Elev. (m)
02 Shallow				Feb. 26, 2021	0.7	78.3
				March 12, 2021	0.6	78.4
	4.2	74.8	Cilty Clay	April 14, 2021	0.6	78.4
	4.2	74.0	Silty Clay	May 11, 2021	0.5	78.5
				July 30, 2021	0.6	78.4
				Feb. 22, 2024	0.7	78.3
				Feb. 26, 2021	0.8	78.2
				March 12 2021	0.7	78.3
02 Door	7.6	71.4	Limestone	April 14, 2021	0.8	78.2
02 Deep	7.6	71.4	Bedrock	May 11, 2021	0.6	78.4
				July 30, 2021	0.8	78.3
				Feb. 21, 2024	1.0	78.0

Client: EVB Engineering on behalf of the Town of Greater Napanee

File No.: 40745

Borehole / Monitoring Well No	Mid Screen Depth (m)	Mid Screen Elev. (m)	Screened Material	Date	WL Depth (m)	WL Elev. (m)
	. , ,	,		Feb. 26, 2021	0.2	76.3
			Silty clay	March 12, 2021	-0.2*	76.7
03 Shallow	5.7	70.7	and silt some	April 14, 2021	-0.1*	76.5
			sand	May 11, 2021	-0.2*	76.7
				July 30, 2021	0.0	76.4
				Feb. 26, 2021	-0.2*	76.6
				March 3, 2021	0.7	75.8
03 Deep	9.1	67.4	Limestone Bedrock	April 14, 2021	0.6	75.9
			Dearock	May 11, 2021	0.5	76.0
				July 30, 2021	0.5	75.9
				Feb. 26, 2021	2.9	74.3
				March 12, 2021	1.0	76.1
0.4 Challann	4.0	70.0	Cilturation	April 14, 2021	1.2	75.9
04 Shallow	4.6	76.6	Silty clay	May 11, 2021	1.0	76.2
				July 30, 2021	1.3	75.9
				Feb. 21, 2024	0.9	76.3
				Feb. 26, 2021	1.8	75.4
				March 2, 2021	1.8	75.4
04 Daara	0.7	00.5	Cilta alan	April 14, 2021	1.8	75.4
04 Deep	8.7	68.5	Silty clay	May 11, 2021	1.6	75.6
				July 30, 2021	1.6	75.5
				Feb. 22, 2024	1.6	75.6
				Feb. 26, 2021	-0.8*	79.3
				March 12, 2021	-1.0*	79.5
06	4.3	74.2	Silty clay / silty sand	April 14, 2021	-0.8*	79.3
			only daria	May 11, 2021	-0.9*	79.4
				July 30, 2021	-0.8*	79.3
				Feb. 26, 2021	2.2	74.2
				March 2, 2021	2.1	74.3
11	2.3	74.1	Sand / silty clay	April 14, 2021	2.1	74.3
			only oldy	May 11, 2021	2.1	74.3
				July 30, 2021	2.1	74.3

Client: EVB Engineering on behalf of the Town of Greater Napanee

File No.: 40745

Borehole / Monitoring Well No	Mid Screen Depth (m)	Mid Screen Elev. (m)	Screened Material	Date	WL Depth (m)	WL Elev. (m)
MW24 404	8.7	70.4	Limestone	Feb. 20, 2024	1.8	77.2
MW24-101	0.7	70.4	Bedrock	Feb. 22, 2024	1.8	77.2

^{*} Negative water level indicates water level measured above the ground surface.

Based on the groundwater elevations measured at the monitoring wells, the local shallow overburden groundwater flow is interpreted to travel in a general southerly / southeasterly direction towards Napanee River. On review of the nested overburden / bedrock well pairs (02 and 03), the overburden and shallow bedrock aquifers have very similar water levels, suggesting the overburden and shallow bedrock are hydraulicly connected. A minor downward hydraulic gradient is noted in all nested well pairs (02, 03, and 04).

Hydraulic Conductivity 4.2

A total of nine slug tests were completed and analyzed using the Hvorslev method. The test results indicated that the hydraulic conductivity of the screened formations ranged from 1.9×10^{-8} m/s to 1.7×10^{-5} m/s. Plots of the slug test results are included in Appendix D. The hydraulic conductivity values calculated from the in-situ slug tests are summarized in Table 4-2.

Table 4-2: Summary of In-Situ Hydraulic Conductivity Test Results

Borehole/Monitoring		Depth n)	Hydraulic	Dominant Screened Formation
Well No	Тор	Bottom	Conductivity (m/s)	Bonniant Gordened i ormation
02 Shallow	2.7	5.7	5.5 x 10 ⁻⁶	Silty clay, frequent sand seams
02 Deep	6.4	8.8	2.5 x 10 ⁻⁷	Limestone bedrock
03 Shallow	4.2	7.2	2.0 x 10 ⁻⁶	Silty clay and silt some sand
03 Deep	7.9	10.3	2.5 x 10 ⁻⁶	Limestone bedrock
04 Shallow	3.1	6.1	1.9 x 10 ⁻⁸	Silty clay
04 Deep	7.1	10.1	2.3 x 10 ⁻⁶	Silty clay, frequent silt/sand lenses
06	2.8	5.8	1.4 x 10 ⁻⁶	Silty clay and silty sand
11	1.5	3.0	4.4 x 10 ⁻⁶	Sand, some silt and silty clay
MW24-101	7.9	9.4	1.7 x 10 ^{-5*} 1.1 x 10 ^{-6*}	Limestone bedrock

^{*}Two analyses were conducted for test at MW24-101 due to two distinct curves, which may be due to variable hydraulic conductivity of the bedrock matrix.

Six slug tests were conducted in the silty clay and sand overburden, and the largest tested value of 5.5 x 10⁻⁶ m/s was selected for dewatering estimates. Three slug tests were conducted in the

Client: EVB Engineering on behalf of the Town of Greater Napanee December 20, 2024 Page: 13 of 29

limestone bedrock and the largest tested value of 1.7 x 10⁻⁵ m/s was selected for dewatering estimates.

4.3 Groundwater Quality Results

As described in Section 3.4, groundwater quality samples were collected from two monitoring wells installed in the boreholes listed in Table 3-2 (06 and 04 Deep) using bailers. In addition, two field filtered metals samples were submitted from the above-mentioned wells for analysis of metals for PWQO metals limits as a preliminary measurement of dissolved, and assumedly not physically filterable, parameters.

Exceedances of the above standards within the groundwater analytical results are discussed below. A summary of the exceedances and the Certificates of Analysis are provided in Appendix E.

It should be noted that a limited number of groundwater samples were collected and the samples are only representative of groundwater found at the well screen depths.

PWQO and Interim **PWQO**

Testing of groundwater samples for comparison to the PWQOs and Interim PWQOs comprised analysis of general chemistry and selected metals and inorganic parameters. Not all parameters in the PWQOs were analyzed.

Multiple parameters exceeded the PWQO in the unfiltered samples from 06, including the following: iron, nickel, silver, and zinc. No parameters exceeded the PWQO in the unfiltered samples from 04 Deep. Multiple parameters exceeded the interim PWQO limits in the unfiltered samples from both 06 and 04 Deep, including aluminum, cobalt, copper, lead, phosphorus, thallium, vanadium, and zinc. Phosphorus exceeded the interim PWQO of 0.01 mg/L, which is set as a high level of protection against aesthetic deterioration, the interim PWQO of 0.02 mg/L to avoid nuisance concentrations of algae in lakes, and the interim PWQO of 0.03 mg/L to avoid excessive plant growth in rivers and streams.

On review of the filtered analytical results, including dissolved parameters, filtering lowered most parameters concentrations below the PWQOs, with a few exceptions. In the filtered samples from 04 Deep, cobalt exceeded the interim PWQO. Concentrations of phosphorous (dissolved) were measured at non-detectable concentrations from the unfiltered samples from both 06 and 04 Deep, but the detection limits are above the interim PWQOs of 0.01 mg/L, 0.02 mg/L, and 0.03 mg/L discussed above.

Client: EVB Engineering on behalf of the Town of Greater Napanee

File No.: 40745

Groundwater of the quality that was observed herein could not be discharged directly to or within 30 m of a surface water body. Further, the above results suggest that while filtration may have removed some metals, it did not lower all parameters to within the interim PWQOs.

Greater Napanee Sewers By-Law

The results of the unfiltered groundwater samples analyzed in comparison to the Greater Napanee Sewers By-law met the sanitary/combined limits for all tested parameters but did not meet the storm limits for manganese, phosphorus, total suspended solids, and zinc.

Groundwater of the quality that was observed herein could not be discharged to the storm sewer without pre-treatment.

5. DEWATERING ASSESSMENT

5.1 Construction Dewatering

Groundwater taking for construction dewatering is governed by the Ontario Water Resources Act (OWRA), Environmental Protection Act (EPA) and the Water Taking and Transfer Regulation 387/04, a regulation under the OWRA. If the water taking rate will be greater than 50,000 L/day and less than 400,000 L/day, then registration on the Environmental Activity and Sector Registry (EASR) will be required. If the water taking rate will be greater than 400,000 L/day, then a Category 3 Permit to Take Water (PTTW) will be required.

Assessment of the need for a Category 3 PTTW or registration on the EASR is provided, based on dewatering estimates presented herein. For the purposes of estimating water taking, the estimated withdrawal rates are conservatively assessed in order to reduce the likelihood that actual pumping rates might exceed the permit allowance thereby stopping work and delaying the Project.

Based on the detailed design drawings, it is understood that structures that may require dewatering include the Multi-Use Building, Influent Buffer Tanks and Sludge Buffer Tanks, Three AGS Reactor Tanks, a Post-Equalization Tank adjoining the AGS Tanks, an Operation Building, the Tertiary/Ultraviolet Disinfection Building, the Sanitary Pumping Station, an Outfall Pipe, and service piping and duct banks. It is our understanding that the Site-wide access roads will not require excavations below grade. It is assumed that the AGS Tanks, Post-Equalization Tank, and new Operation Building will be constructed within a single combined excavation; therefore, a single dewatering estimate for these structures was assumed.

Client: EVB Engineering on behalf of the Town of Greater Napanee

File No.: 40745

It is understood that the Influent Buffer Tanks and Sludge Buffer Tanks will be constructed within watertight shoring systems socketed into the underlying bedrock and the remainder of the excavations are assumed to be constructed with non-watertight shoring. It is recommended that the watertight shoring walls be extended a minimum of approximately 1 m into limestone bedrock to cut off the overburden. The bedrock is still anticipated to provide flow.

The estimated dimensions of the aforementioned construction features and dewatering assumptions are summarized below:

- A single storey Multi-Use Building including headworks, electrical and mechanical rooms, lab, and offices. The footprint of the building will be approximately 32 m long and 22 m wide, with an assumed excavation of 35 m x 25 m. The building will have two floor slab levels, with the office area having a finished floor Elevation of 81.76 m and the headworks area having a finished floor elevation of 80.90 m. The headworks building will typically be founded at elevation of 79.1 m. A vortex tank within the headworks will have a founding elevation of 76.03 m. The dewatering calculations assume an unconfined scenario using the highest hydraulic conductivity value for silty clay and sand overburden (5.5 x 10⁻⁶ m/s) from Section 4.2 and an assumed high water level elevation of 78.5 m, based on the maximum water level measured in Monitoring Well BH-02 Shallow.
- Influent Buffer Tanks directly east of the Multi-Use Building and Sludge Buffer Tanks directly to the south of the Multi-Use Building. The footprint of the Influent Buffer Tanks will be approximately 9 m wide and 17 m long, and the Sludge Buffer Tanks will be approximately 6 m wide and 18 m long. It is assumed the two structures will be constructed in separate excavations with footprints of approximately 20 m x 13 m and 20 m x 8 m for the Influent Buffer Tanks and Sludge Buffer Tanks, respectively. The deepest excavation elevation levels are assumed to be approximately 71.7 m and 73.9 m for the Influent Buffer Tanks and Sludge Buffer Tanks, respectively. The excavation for the Influent Buffer Tanks is anticipated to extend through the silty clay and advance to the top of bedrock. The excavation for the Sludge Buffer Tank is anticipated to advance through the silty clay only. As there will be approximately only 2.2 m of silty clay below the excavation of the Sludge Buffer Tanks, there is a possibility that depressurization of the underlying bedrock will be required prior to excavation in order to reduce the risk of basal heave. It is understood that it is proposed that both excavations will be constructed within separate watertight shoring systems socketed into the underlying limestone bedrock; therefore, the dewatering calculations assume a confined scenario with an assumed 3 m extraction interval below the excavation, using the highest hydraulic conductivity value of for limestone bedrock (1.7 x 10⁻⁵ m/s) from Section 4.2 and an assumed high water level

Client: EVB Engineering on behalf of the Town of Greater Napanee December 20, 2024
File No.: 40745 Page: 16 of 29

elevation of 78.5 m, based on the maximum water level measured in Monitoring Well BH-02 Shallow. In addition, an allowance for removal of water entrained by the watertight shoring system in the overburden was provided, assuming a drainable porosity of 20%, a base flow rate assuming six days to complete bulk excavation, and a peak flow rate assuming two days to complete bulk excavation (i.e. a safety factor of three on the base flow rate).

- Three AGS Reactor Tanks, a Post-Equalization Tank adjoining the AGS Tanks, and an Operation Building will be constructed within one excavation. The footprint of the excavation is assumed to be approximately 65 m x 55 m and the base of the bulk excavation is assumed to be at Elev. 74.9 m. The dewatering calculations assume an unconfined scenario using the highest hydraulic conductivity value for silty clay and sand overburden (5.5 x 10⁻⁶ m/s) from Section 4.2 and an assumed high water level elevation of 77.2 m, based on the maximum water level measured in monitoring well MW24-101.
- A single storey Tertiary / Ultraviolet Disinfection Building with flocculation tanks. The footprint of the building will be approximately 27 m long and 16 m long with an assumed excavation of 30 m x 20 m. The base of the excavation is assumed to be at Elev. 74.4 m. The dewatering calculations assume an unconfined scenario using the highest hydraulic conductivity value for silty clay and sand overburden (5.5 x 10⁻⁶ m/s) from Section 4.2 and an assumed high water level elevation of 76.3 m, based on the maximum water level measured in Monitoring Well BH-04 Shallow.
- A Sanitary Pumping Station to the east of the Tertiary Building. The wet well for the pumping station will be approximately 2.4 m wide and 2.4 m long, with a base elevation of approximately 73.0 m. The assumed excavation footprint will be 4 m x 4 m and the base of the excavation is assumed to be at Elev. 72.7 m. The dewatering calculations assume an unconfined scenario using the highest hydraulic conductivity value for silty clay and sand overburden (5.5 x 10⁻⁶ m/s) from Section 4.2 and an assumed high water level elevation of 76.3 m, based on the maximum water level measured in Monitoring Well BH-04 Shallow.
- The trench for the Outfall Pipe is assumed to be 2 m deep with a footprint of 55 m x 2 m. The dewatering calculations assume an unconfined scenario using the highest hydraulic conductivity value for silty clay and sand overburden (5.5 x 10⁻⁶ m/s) from Section 4.2 and an assumed high water level of 0.9 m below grade, based on the maximum water level measured in Monitoring Well BH-04 Shallow. It is understood that other shallow trenches will be required within the project area for service piping and duct banks; however, it is assumed that the Outfall Pipe trench will represent the worst-case conditions for the required service trenches.

Client: EVB Engineering on behalf of the Town of Greater Napanee December 20, 2024
File No.: 40745 Page: 17 of 29

The expected soil and groundwater conditions at the excavations are assumed based on the on the subsurface conditions encountered in the boreholes presented in Appendix C. The excavations are expected to extend through the surficial pavement structure or topsoil, fill, and into the overburden comprised of primarily silty clay with occasional silt and sand layers and extending to limestone bedrock. A summary of the excavation details, and anticipated soil and groundwater conditions is provided in Table 5-1.

Table 5-1: Summary of Excavations and Dewatering Conditions

Excavation	Approx. Excavation Footprint (m)	Approx. Base Elev. (m)	Borehole No.	Anticipated Ground Conditions at Base of Excavation	Assumed Highest Ground- water Elev. (m)	Assumed Hydraulic Conductivity (m/s)	Target Dewater Elev. (m)
Multi-Use Building	35 x 25	76.0	01, 02, MW24- 101	Silty clay	78.5	5.5 x 10 ⁻⁶	75.0
Influent Buffer Tanks Watertight Shoring	20 x 13	71.7	01, 02, MW24- 101	Limestone Bedrock	78.5	1.7 x 10⁻⁵	71.2
Sludge Buffer Tanks Watertight Shoring and Depressurization of Bedrock	20 x 8	73.91	01, 02, MW24- 101	Silty clay and Limestone Bedrock	78.5	1.7 x 10 ⁻⁵	72.9
Combined Excavation for Three AGS Reactor Tanks, Post- Equalization Tank, and Operation Building	65 x 55	74.9	03, 04, 22, MW24- 101	Silty Clay, Peat	77.2	5.5 x 10 ⁻⁶	73.9
Single storey Tertiary / Ultraviolet Disinfection Building	30 x 20	74.4	05, 10	Sand to silty sand, silty clay	76.3	5.5 x 10 ⁻⁶	73.4
Sanitary Pumping Station	4 x 4	72.7	10	Sand and silty clay	76.3	5.5 x 10 ⁻⁶	71.7
Utility Trench (e.g., Outfall Pipe)	55 x 2	2 m below grade	04, 10, 11, 12, 19	Sand and silty clay	0.9 m below grade	5.5 x 10 ⁻⁶	3 m below grade

Note 1 It is assumed that wells would be installed in the bedrock below the depth of the required excavation for the Sludge Buffer Tanks.

The following approach was used to estimate the budgeted peak water taking rate:

A base groundwater extraction flow rate was estimated, and a factor of safety of three was applied to this flow rate to provide an allowance for removal of water from aquifer storage, variation in hydraulic conductivity, actual excavation dimensions and geometry, and groundwater levels due to seasonality or other factors;

Client: EVB Engineering on behalf of the Town of Greater Napanee December 20, 2024 File No.: 40745 Page: 18 of 29

- An allowance for removal of rainfall into the excavation was included, assuming 24 hours are used to remove 50 mm of rainfall;
- An allowance for removal of water entrained by the watertight shoring system (for the Influent Buffer Tanks and Sludge Buffer Tanks) in the overburden was provided, assuming a drainable porosity of 20%, a base flow rate assuming six days to complete bulk excavation, and a peak flow rate assuming two days to complete bulk excavation (i.e. a safety factor of three on the base flow rate); and,
- Lowering of groundwater to about 1 m below the base of excavations terminating in overburden and about 0.5 m below the base of excavations terminating in bedrock, to facilitate a dry, stable work area was assumed.

Dewatering rates were estimated using the Dupuit analytical solution. The radius of influence was calculated using the Sichardt equation. The calculation details including all the parameters used are presented in Appendix F. The estimated base groundwater flow, peak groundwater flow and radii of influence are summarized in Table 5-2.

Table 5-2: Construction Dewatering Estimate

Excavation Location	Base Groundwater Flow (L/day)	Groundwater Flow with Safety Factor of 3 (L/day)	Stormwater Allowance (L/day)	Removal of Water Entrained in the Soil (L/day)	Estimated Peak Flow Rate (L/day)	Approx. Radius of Influence (m)
Multi-Use Building	58,000	174,000	44,000	-	218,000	25
Influent Buffer Tanks Watertight Shoring	91,000	273,000	13,000	177,000	463,000	90
Sludge Buffer Tanks Watertight Shoring and Depressurization of Bedrock	69,000	207,000	8,000	73,000	288,000	69
Combined Excavation for Three AGS Reactor Tanks, Post- Equalization Tank, and Operation Building	50,000	150,000	179,000	-	329,000	23
Single Storey Tertiary / Ultraviolet Disinfection Building	26,000	78,000	30,000	-	108,000	20
Sanitary Pumping Station	17,000	51,000	1,000		52,000	32
Utility Trench (e.g., Outfall Pipe)	19,000	57,000	6,000	-	63,000	15
Total	330,000	990,000	281,000	250,000	1,521,000	As above

The total base groundwater flow from all the excavations is approximately 333,000 L/day. With a safety factor of three on groundwater flow, a rainfall removal allowance of 50 mm in 24 hours, and

Client: EVB Engineering on behalf of the Town of Greater Napanee December 20, 2024
File No.: 40745 Page: 19 of 29

an allowance for removal of water entrained in soil for excavations with watertight shoring, the estimated peak flow rate flow is approximately 1,521,000 L/day. Since the combined water taking rates for the subject construction dewatering within an overlapping radius of influence are expected to be greater than 400,000 L/day, a Category 3 PTTW will be required prior to commencing excavations. The maximum dewatering radius of influence for a single excavation was estimated to be 90 m.

5.2 Permanent Drainage

Based on the design drawings, the Three AGS Reactor Tanks, the Operation Building, and the Single Storey Tertiary / Ultraviolet Disinfection Building have perimeter footing sub-drains indicated for the purpose of long-term groundwater drainage. The drawings indicate perimeter footing sub-drains with a lowest base elevation at approximately Elev. 75.99 m for the AGS tanks, 75.89 m for the Operation Building, and 75.28 m for the Single Storey Tertiary / Ultraviolet Disinfection Building.

The other structures, including the Post-Equalization Tank, Multi-Use Building, Influent Buffer Tanks, Sludge Buffer Tanks, Sanitary Pumping Station, Outfall Pipe, and service piping and duct banks have no sub-drains indicated on the drawings and it is understood that these structures will be designed to be waterproofed and to resist hydrostatic pressure; therefore, no permanent drainage is anticipated for these structures.

The maximum water levels recorded in the vicinity of the Three AGS Reactor Tanks and Operation Building was 77.2 m and the maximum water level recorded in the vicinity of the Tertiary / Ultraviolet Disinfection Building was 76.3 m; therefore, the foundation drains installed at elevations 75.99 m, 75.89 m, and 75.28 m would continuously collect groundwater and permanently lower the water table. Estimates of daily permanent drainage flow rates from the foundation drains for these three structures are presented on Table 5-3.

Client: EVB Engineering on behalf of the Town of Greater Napanee December 20, 2024
File No.: 40745 Page: 20 of 29

Table 5-3: Permanent Drainage Estimates

Structure	Approx. Structure Footprint (m)	Approx. Sub Drain Base Elev. (m)	Assumed Highest Ground-water Elev. (m)	Assumed Hydraulic Conductivity (m/s)	Base Foundation Drainage Flow (L/day)	Peak Foundation Drainage Flow with Safety Factor of 3 (L/day)	Approx. Radius of Influence (m)
Three AGS Reactor Tanks	55 x 33	75.99	77.2	1.2 x 10 ⁻⁶	7,000	21,000	<10
Operation Building	39 x 14	75.89	77.2	1.2 x 10 ⁻⁶	4,000	12,000	<10
Single Storey Tertiary / Ultraviolet Disinfecti on Building	27 x 16	75.28	76.3	1.2 x 10 ⁻⁶	4,000	12,000	<10
		Total	15,000	45,000	As above		

Permanent drainage flow rates were estimated using the Dupuit analytical solution. The radius of influence was calculated using the Sichardt equation. The geometric mean hydraulic conductivity value for silty clay and sand overburden (1.2 x 10⁻⁶ m/s) was used, calculated based on the results of all overburden slug test results presented in Section 4.2, because it is expected to be a more representative value over a widespread area and over an extended duration. A base groundwater extraction flow rate was estimated, and a factor of safety of 3 was applied to this flow rate to provide an allowance for significant precipitation events, variation in hydraulic conductivity, actual structure dimensions and geometry, and ground water levels due to seasonality or other factors. The calculation details including all the parameters used are presented on Table F5 in Appendix F.

Considering the combined estimated peak long-term permanent drainage water taking rate is 45,000 L/day and is thus less than 50,000 L/day, it is anticipated that a long-term Category 3 Permit To Take Water (PTTW) from the MECP will not be required for the long-term foundation drainage needs of the structures on Site.

IMPACT ASSESSMENT 6.

Within the construction dewatering zone of influence, impacts such as ground settlement, reduction in groundwater flow to groundwater users and watercourses, and other impacts may potentially occur. The potential impacts are discussed herein, and monitoring and potential mitigation measures are discussed in the following section.

Client: EVB Engineering on behalf of the Town of Greater Napanee File No.: 40745 Page: 21 of 29

6.1 **Geotechnical Impacts**

Dewatering of the excavations are estimated to have radii of influence varying between 15 m and 90 m, with a maximum drawdown of the water table near the edges of the excavations, reducing with distance to the maximum estimated radius of influence. A maximum drawdown of 7.3 m within the limestone was estimated for the excavation for the Influent Buffer Tanks.

It is understood that the excavations for the Influent Buffer Tanks and Sludge Buffer Tanks adjacent to the headworks will take place within the confines of an engineered support system. It is recommended that the support system be watertight in order to cut-off groundwater flows from the sand/silt layer encountered on top of bedrock. Secant pile walls socketed a minimum of 1 m into the limestone bedrock is considered a feasible option for the support system.

Where the excavation extends into the bedrock, concentrated seepage may be experienced from fractures and cavities within the limestone bedrock. Grouting of fractures may be required to reduce the flow. The contractor should be prepared to pump groundwater from the bedrock out of the excavation from inside the watertight shoring system.

It is noted that dewatering activities have the potential to cause settlement of adjacent structures due to an increase in the effective stress of the foundation soils caused by groundwater level lowering. For this project the risk of settlement beneath the existing structures is considered low provided that watertight shoring systems are used for deep excavations that extend into the sand/silt and bedrock. Notwithstanding this assessment, a settlement monitoring program should be carried out during construction as a precautionary measure to confirm that the existing structures do not settle excessively. Thurber can assist with the preparation of a settlement monitoring specification, if requested.

Basal stability is not expected to be an issue for excavations terminated in the limestone bedrock. There is some risk of basal instability in the Sludge Buffer Tank excavation that terminates in silty clay or sand overburden. To mitigate the risk of basal instability in the Sludge Buffer Tank excavation, the overburden could be sub-excavated to bedrock, or the bedrock could be depressurized prior to bulk excavation.

6.2 **Impacts to Surface Water and Natural Environment**

As described in Section 2.3, the Napanee River and Lower Napanee River Complex Provincially Significant Wetland (PSW) are located immediately south of the Site are within the zone of influence of the proposed dewatering activities. Reduction of groundwater discharges to surface water flow, to some extent, may occur due to groundwater extraction. Based on the Quinte Conservation surface water monitoring gauge for the Napanee River located in the Hamlet of

December 20, 2024

Page: 22 of 29

Client: EVB Engineering on behalf of the Town of Greater Napanee

Camden East, approximately 14.3 km upstream from the Site, the low water trigger condition for Napanee River is 1.67 m³/s, or approximately 144,288,000 L/day. The maximum combined dewatering rate for the proposed work excluding stormwater and removal of water entrained in the soil is 990,000 L/day, or approximately 0.7% the low water trigger condition for Napanee River. Therefore, the magnitude of the impact is expected to be negligible due to the large volume of water in the Napanee River relative to estimated dewatering volumes and it is reasonable to assume that the dewatering water would originate from other portions of the aquifer and not only from the river flow. The Lower Napanee River Complex PSW is interpreted to be supplied primarily by water from the Napanee River; therefore, no impacts to the water quantity of the PSW are anticipated.

Groundwater of the quality that was observed herein could not be discharged to surface water or within 30 m of surface water or the Lower Napanee River Complex PSW, without pre-treatment due to exceedances of the PWQO and interim PWQO and could not be discharged to the Greater Napanee storm sewer without pre-treatment due to exceedances above the Greater Napanee Strom Sewer Use Limit. A water treatment specialist or qualified process engineer must be consulted regarding potential treatment options. Assessment of impacts to the wetland ecosystem and impacts to stream geomorphology due to groundwater discharge are beyond the scope of this Study.

6.3 Impacts to Water Well Users

Construction dewatering with watertight soil shoring is expected to result in a maximum radius of influence of approximately 90 m. Dewatering activities may impact the quantity and/or quality of water obtained by water well users within the radius of influence.

As noted in Section 2.4, there were 25 well records within the Study Area listed as water supply for domestic, public, livestock, and commercial uses. Temporary dewatering activities may impact water well users within the respective radii of influence, including impacting the quality or quantity of drinking water. The magnitude of any drawdown and the relative impact is anticipated to decrease as the distance between the well and the edge of the excavation increases.

A pre-construction, construction stage, and post-construction monitoring program should be conducted for properties on the north side of the Napanee River within 270 m (approximately 3 times the radius of influence) of the Site. Wells on the south side of the Napanee River are not expected to be affected by dewatering. The results of the monitoring program will assist in verifying potential impacts on well users and provide the data required to document the effects, where permission is given by residents to monitor their wells. Remedial measures that the Town

Client: EVB Engineering on behalf of the Town of Greater Napanee De File No.: 40745

of Greater Napanee may consider for affected well users include the provision of potable water or assistance with improving or restoring well productivity.

Permanent drainage is anticipated for the Three AGS Reactor Tanks, Operation Building, and the Single Storey Tertiary / Ultraviolet Disinfection Building with a maximum radius of influence of less than 10 m, which is anticipated to not extend past the Site boundary; therefore, no impact to the quantity and/or quality of private wells is anticipated from permanent drainage.

6.4 Other Potential Impacts

With prolonged dewatering activities there can be potential for inorganic or organic chemical compounds present within the radius of influence to migrate and to enter open excavations where sufficient flow rate and time permit. Considering the temporary duration of dewatering activities, as well as the limited commercial and industrial development in the area with the exception of the WPCP, there is a low likelihood that contaminants would be mobilized during dewatering activities; however, a contaminant overview would be required to confirm this. If any contaminated groundwater is collected from the dewatering operations it should be treated to meet any discharge criteria or disposed of at a facility licensed to handle such materials.

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Category 3 Permit To Take Water

As described previously, the estimated peak water taking rate is 1,521,000 litres per day. Since the combined discharge rates for the subject construction dewatering within an overlapping radius of influence are expected to be greater than 400,000 L/day, a Category 3 Permit To Take Water (PTTW) from the MECP will be required prior to commencing full-scale operations. The permit application fee from MECP is currently \$3,000 and the application will be subject to an administrative review as well as a technical review. MECP may request additional information or testing. The review process typically takes three to five months following submission.

The peak water taking rate for the project as a whole will depend on the number of excavations and which specific excavations will be conducted concurrently. For each excavation, the water taking rate is expected to be highest at the beginning of dewatering when the water table is being actively lowered and during large rainfall events. The design and operation of the dewatering activities is the sole responsibility of the Contractor, to ensure the PTTW limit is not exceeded.

The PTTW will include terms and conditions that must be met, which will include performance, monitoring and reporting requirements among others.

Client: EVB Engineering on behalf of the Town of Greater Napanee December 20, 2024 File No.: 40745 Page: 24 of 29

7.2 Discharge of Groundwater

Groundwater of the quality that was observed herein could not be discharged to surface water, within 30 m of surface water, or within 30 m of the Lower Napanee River Complex PSW due to exceedances of the PWQO and interim PWQO as discussed in Section 4.3. If considering discharge to or within 30 m of surface water or the PSW, additional treatment is anticipated to be required. It is anticipated that sediment control alone will be insufficient to address all exceedances identified. A water treatment specialist or qualified process engineer must be consulted regarding potential treatment options. Discharge of groundwater to the natural environment may require approval by Quinte Conservation, MECP and potentially the Ministry of Natural Resources and Forestry (MNRF), and the Department of Fisheries and Oceans (DFO). As noted previously in Section 2.3, a provincially significant wetland is present adjacent to the Site along the edges of the Napanee River and additional restrictions in regard to discharge near the wetland may apply. Assessment of impacts due to groundwater discharge to or within 30 m of surface water or the PSW, including increase in streamflow rates, impacts to water temperature, impacts to the wetland ecosystem, and impacts to stream geomorphology are beyond the scope of this Study.

Discharge more than 30 m away from a surface water body may not require treatment beyond limiting total suspended solids (TSS) to be no higher than 25 mg/L and possibly lower depending on discharge permit criteria and external agencies, and dispersing discharge water to promote infiltration so that no channelized flow of discharge water directly flows into surface water.

Groundwater of the quality that was observed herein could not be discharged to the Greater Napanee storm sewer without pre-treatment, but could be discharged to the Napanee sanitary sewer based on the samples that were submitted and analyzed. Treatment to meet storm limits may require advanced treatment in addition to sediment control/filtration due to dissolved metals. A water treatment specialist or qualified process engineer must be consulted regarding potential treatment options. Prior to discharge to a sewer, a discharge agreement must be obtained from the Town of Greater Napanee and it must be verified that the sewer system has capacity for the proposed discharge volume. Sediment in pumped groundwater should be minimized prior to discharge. Additional testing of actual pumped groundwater would need to be conducted prior to discharge to confirm that the pumped groundwater is in accordance with the By-Law criteria.

As noted previously, water quality observed during construction will vary from the results obtained herein based on a number of factors. An experienced dewatering contractor and water treatment contractor are recommended to be retained to design and operate dewatering and/or treatment operations as required.

Client: EVB Engineering on behalf of the Town of Greater Napanee December 20, 2024
File No.: 40745 Page: 25 of 29

7.3 **Additional Recommendations**

The following measures are recommended to mitigate the potential for the dewatering activities to cause negative impacts as assessed previously:

- Implement monitoring and contingency plans.
- Treatment of groundwater to meet the discharge limits is required. Advanced treatment methods beyond typical sediment control (filtration / sedimentation) will likely be required for discharge to surface water or within 30 m of surface water or the PSW or to the Town of Greater Napanee storm sewer. Treatment of solids is anticipated for discharge to land surface greater than 30 m from surface water provided the discharge water infiltrates and overland flow does not reach surface water.
- The operation and monitoring of discharge facilities should be carried out by an experienced dewatering contractor and water treatment contractor familiar with fisheries and water quality requirements.
- All occupational health and safety regulations must be adhered to, including those with respect to work in the potential presence of toxic or explosive gases or a lack of oxygen.

7.4 **Proposed Monitoring Plan and Contingency Plan**

There are three monitoring and contingency plans that are applicable to the project, which are presented in Table G1, Table G2, and Table G3 in Appendix G.

- Table G1: Monitoring and Contingency Plan for Groundwater Taking
- Table G2: Monitoring and Contingency Plan for Discharge to the town of Greater Napanee Sanitary/Combined Sewer
- Table G3: Monitoring and Contingency Plan for Discharge to Ground Surface Greater than 30 m from Surface Water

The conditions under which each Monitoring and Contingency Plan is applicable are identified in Table 7-1. Details of each plan are further presented herein Appendix G.

December 20, 2024 Client: EVB Engineering on behalf of the Town of Greater Napanee File No.: 40745 Page: 26 of 29

Table 7-1: Monitoring and Contingency Plan Applicability

Monitoring and Contingency Plan	Applicable Conditions
Table G1 (Groundwater Taking)	Applicable to each water taking location where water is being taken.
Table G2 (Discharge to town of Greater Napanee Sanitary/Combined Sewer)	Applicable to each sewer discharge location and each new water taking location that is being discharged to said location.
Table G3 (Monitoring and Contingency Plan for Discharge to Ground Surface Greater than 30 m from Surface Water)	Applicable to each ground surface discharge location and each new water taking location that is being discharged to said location.

It is noted that the Contractor's means and methods are not known at this time and that the monitoring and contingency plan may need to be adjusted and further specified once additional details are known. In addition to the monitoring and contingency measures proposed herein, compliance with all other permits and agreements apply. In particular, any additional measures identified in the PTTW to be issued by MECP.

7.5 Permanent Drainage and Discharge

Considering the estimated peak long-term permanent drainage water taking rate is 45,000 L/day and less than 50,000 L/day, it is anticipated a long-term Category 3 Permit To Take Water (PTTW) from the MECP will not be required for the long-term foundation drainage needs of the structures on Site.

The design of foundation drains, mechanical systems, and discharge methods, and approvals for long-term drainage are not addressed herein.

Client: EVB Engineering on behalf of the Town of Greater Napanee December 20, 2024 File No.: 40745 Page: 27 of 29

8. CLOSURE

We trust this information meets your present needs. If you have any questions, please contact the undersigned at your convenience.

DRAFT

Paul Coulson, P.Geo. Hydrogeologist David Hill, M.A.Sc., P.Eng., P.Geo Senior Hydrogeologist / Review Engineer

DRAFT

DRAFT

Date: December 20, 2024

File: 40745

Renato Pasqualoni, P.Eng. Review Principal

Client: EVB Engineering on behalf of the Town of Greater Napanee December 20, 2024
File No.: 40745 Page: 28 of 29

9. REFERENCES

- Armstrong, D.K. and Dodge, J.E.P. 2007. Paleozoic Geology of Southern Ontario. Ontario Geological Survey, Miscellaneous Release Data 219.
- Chapman, L.J. and Putnam, D.F. 1984. The Physiography of Southern Ontario, Third Edition.
 Ontario Geological Survey, Ontario Ministry of Natural Resources.
- Hvorslev, M.J., 1951. Time Lag and Soil Permeability in Groundwater Observations. U.S. Army Corps Engrs. Waterway Exp. Sta. Bull. 36, Vicksburg, Miss.
- Ministry of the Environment, Conservation and Parks. 2024. Source Protection Information Atlas.
- Ministry of the Environment, Conservation and Parks. 2024. Permit to Take Water Database.
- Ministry of the Environment, Conservation and Parks. 2024. Water Well Information System.
- Ministry of Natural Resources and Forestry, Make a Map: Natural Heritage Areas. Queen's Printer for Ontario, 2024.
- Ontario Geological Survey 2010. Surficial geology of Southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 128-REV
- Powers, J. P., Corwin, A. B., Schmall, Paul C. and Kaeck, W. E. 2007. Construction Dewatering and Groundwater Control: New Methods and Applications, Third Edition, New York, New York: John Wiley & Sons.
- Quinte Conservation Authority, River Flows Summary Table, 2024. https://www.quinteconservation.ca/en/watershed-management/water-levels.aspx#River-Flows-Summary-Table
- Thurber Engineering Ltd., 2024. Geotechnical Design Report Revision 1, Napanee Water Pollution Control Plant Expansion & Upgrades, 300 Water Street West, Napanee, Ontario.

Client: EVB Engineering on behalf of the Town of Greater Napanee December 20, 2024
File No.: 40745 Page: 29 of 29

STATEMENT OF LIMITATIONS AND CONDITIONS

1. STANDARD OF CARE

This Report has been prepared in accordance with generally accepted engineering or environmental consulting practices in the applicable jurisdiction. No other warranty, expressed or implied, is intended or made.

2. COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment are a part of the Report, which is of a summary nature and is not intended to stand alone without reference to the instructions given to Thurber by the Client, communications between Thurber and the Client, and any other reports, proposals or documents prepared by Thurber for the Client relative to the specific site described herein, all of which together constitute the Report.

IN ORDER TO PROPERLY UNDERSTAND THE SUGGESTIONS, RECOMMENDATIONS AND OPINIONS EXPRESSED HEREIN, REFERENCE MUST BE MADE TO THE WHOLE OF THE REPORT. THURBER IS NOT RESPONSIBLE FOR USE BY ANY PARTY OF PORTIONS OF THE REPORT WITHOUT REFERENCE TO THE WHOLE REPORT.

3. BASIS OF REPORT

The Report has been prepared for the specific site, development, design objectives and purposes that were described to Thurber by the Client. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the Report, subject to the limitations provided herein, are only valid to the extent that the Report expressly addresses proposed development, design objectives and purposes, and then only to the extent that there has been no material alteration to or variation from any of the said descriptions provided to Thurber, unless Thurber is specifically requested by the Client to review and revise the Report in light of such alteration or variation.

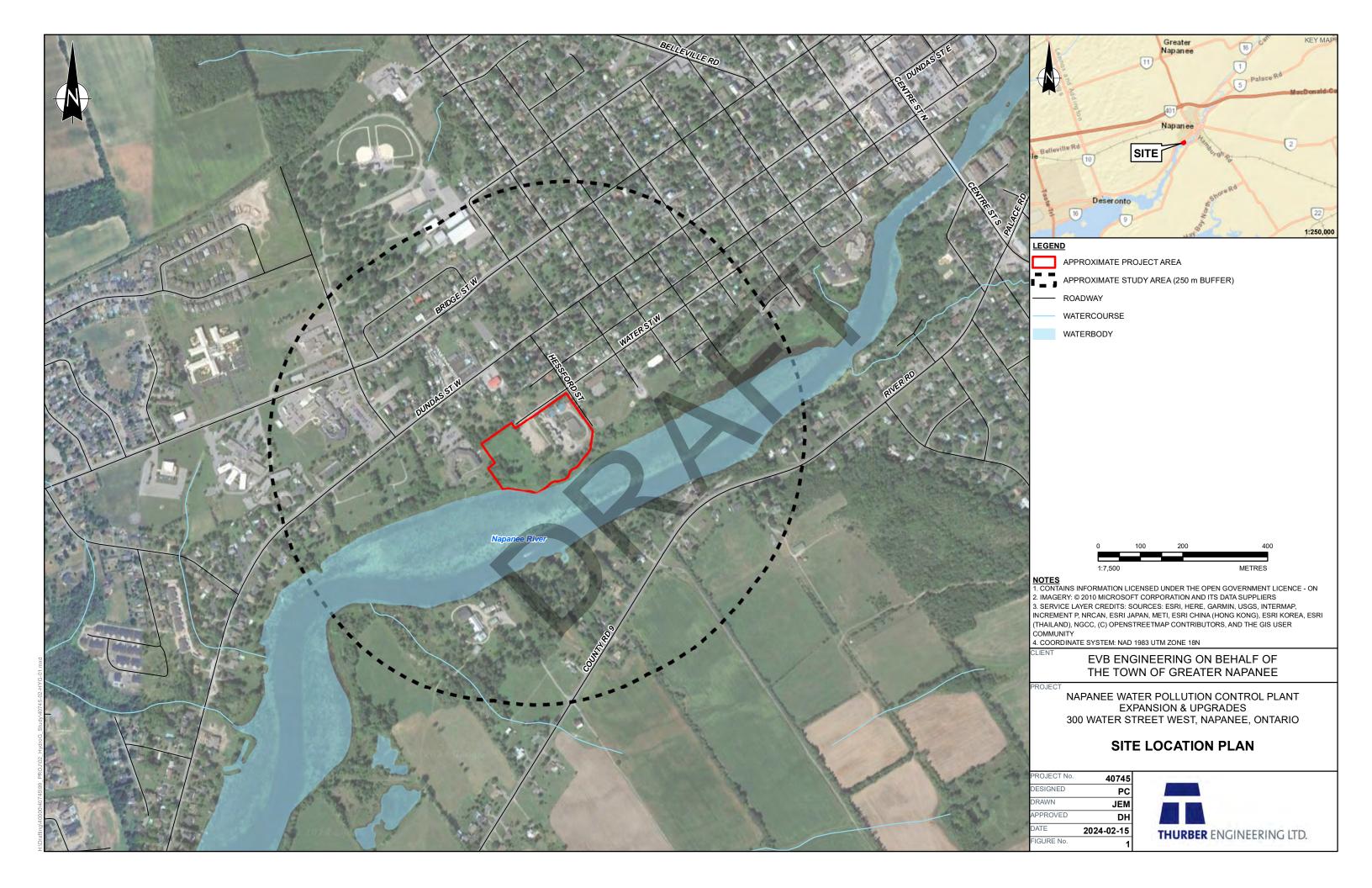
4. USE OF THE REPORT

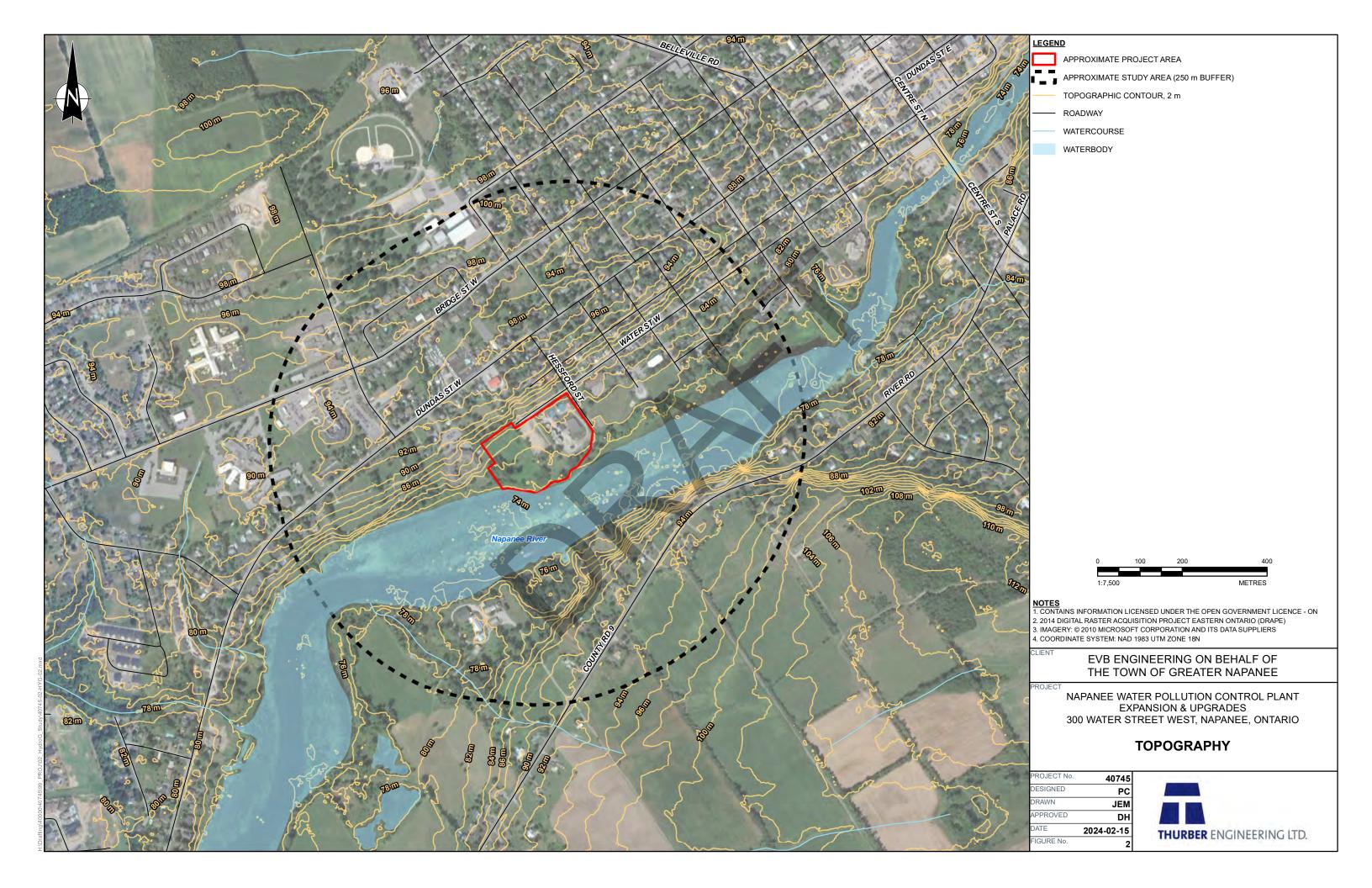
The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT THURBER'S WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS THURBER MAY EXPRESSLY APPROVE. Ownership in and copyright for the contents of the Report belong to Thurber. Any use which a third party makes of the Report, is the sole responsibility of such third party. Thurber accepts no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without Thurber's express written permission.

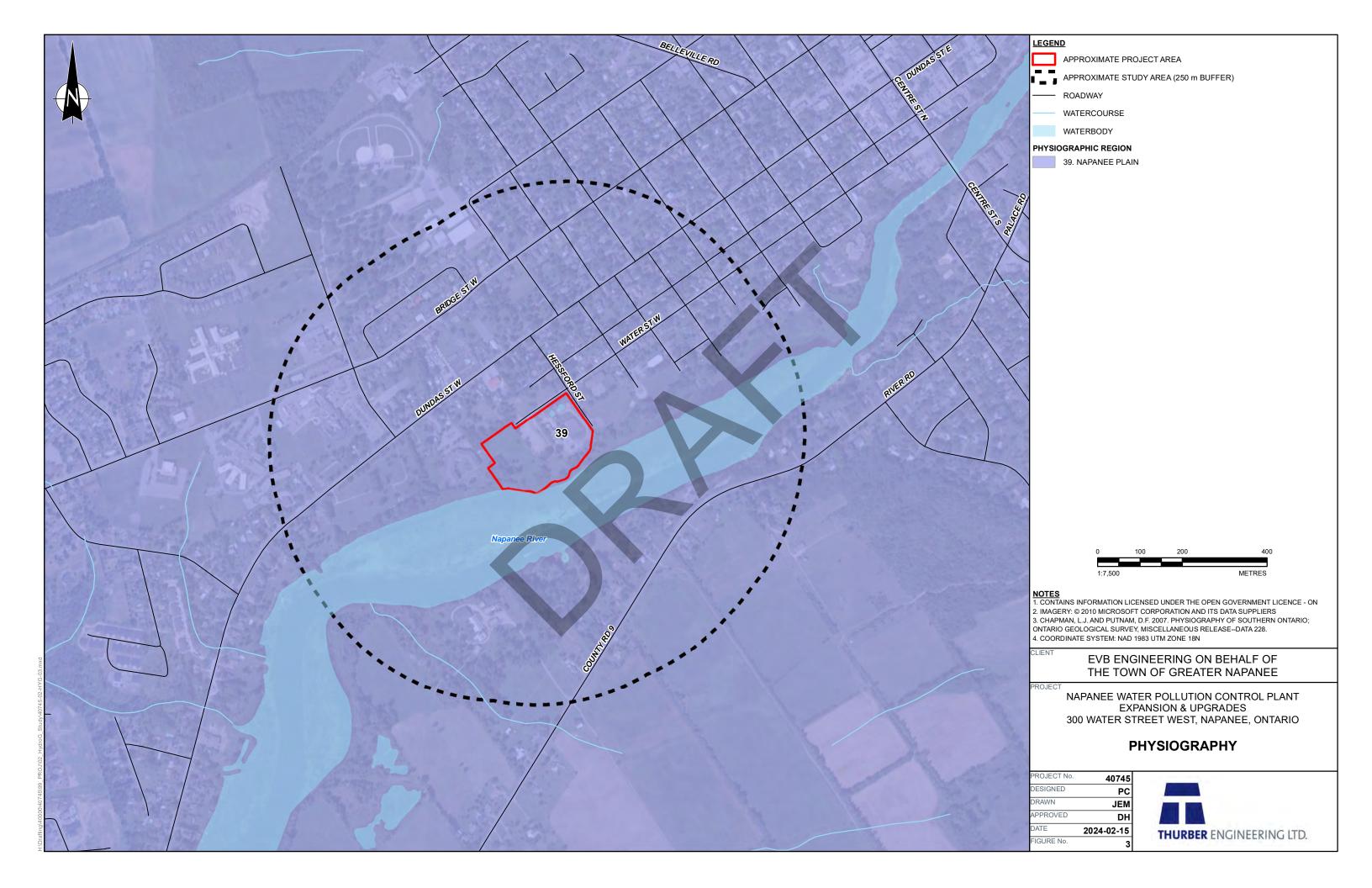
5. INTERPRETATION OF THE REPORT

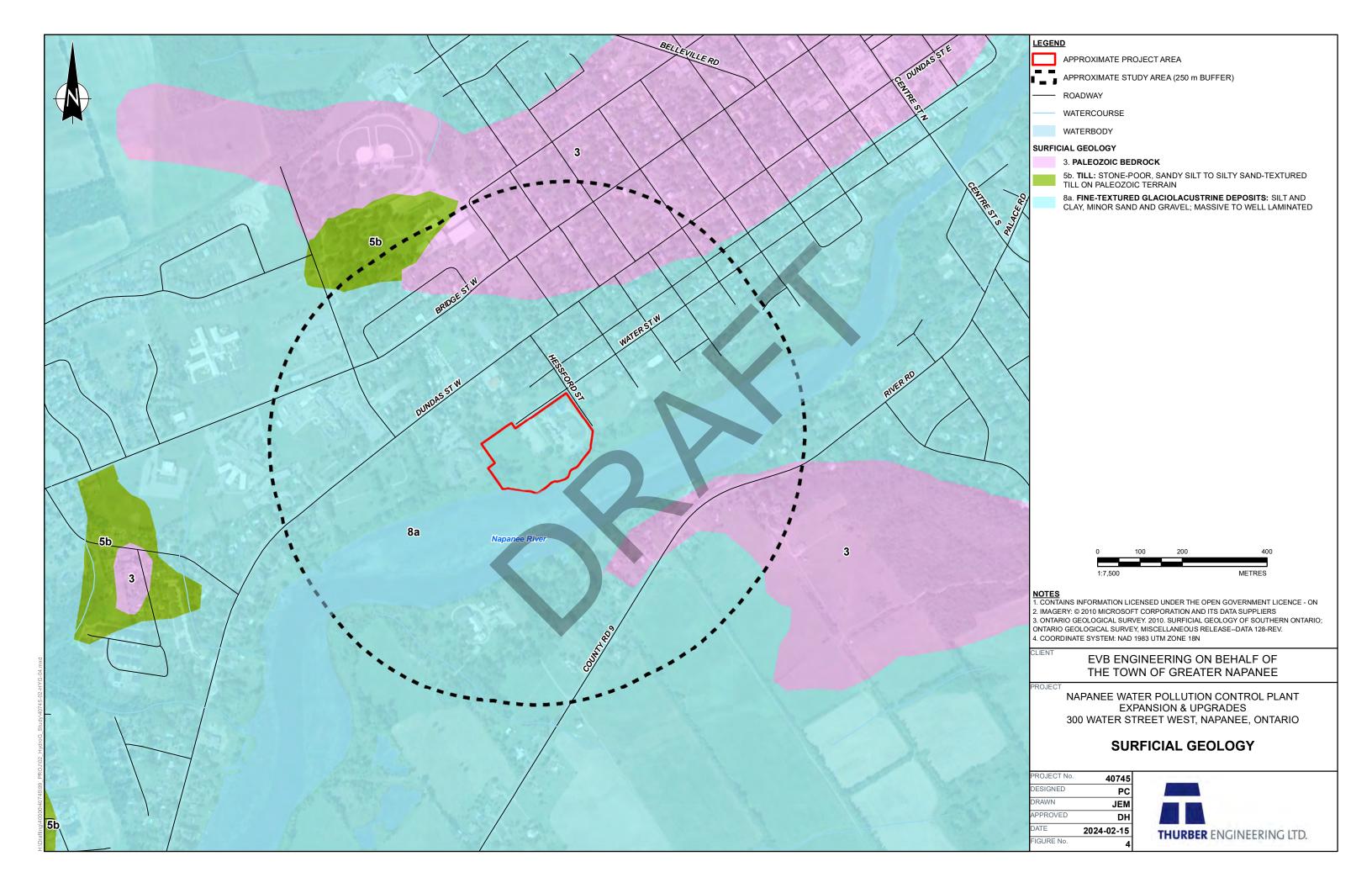
- a) Nature and Exactness of Soil and Contaminant Description: Classification and identification of soils, rocks, geological units, contaminant materials and quantities have been based on investigations performed in accordance with the standards set out in Paragraph 1. Classification and identification of these factors are judgmental in nature. Comprehensive sampling and testing programs implemented with the appropriate equipment by experienced personnel may fail to locate some conditions. All investigations utilizing the standards of Paragraph 1 will involve an inherent risk that some conditions will not be detected and all documents or records summarizing such investigations will be based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated and the Client and all other persons making use of such documents or records with our express written consent should be aware of this risk and the Report is delivered subject to the express condition that such risk is accepted by the Client and such other persons. Some conditions are subject to change over time and those making use of the Report should be aware of this possibility and understand that the Report only presents the conditions at the sampled points at the time of sampling. If special concerns exist, or the Client has special considerations or requirements, the Client should disclose them so that additional or special investigations may be undertaken which would not otherwise be within the scope of investigations made for the purposes of the Report.
- b) Reliance on Provided Information: The evaluation and conclusions contained in the Report have been prepared on the basis of conditions in evidence at the time of site inspections and on the basis of information provided to Thurber. Thurber has relied in good faith upon representations, information and instructions provided by the Client and others concerning the site. Accordingly, Thurber does not accept responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of misstatements, omissions, misrepresentations, or fraudulent acts of the Client or other persons providing information relied on by Thurber. Thurber is entitled to rely on such representations, information and instructions and is not required to carry out investigations to determine the truth or accuracy of such representations, information and instructions.
- c) Design Services: The Report may form part of design and construction documents for information purposes even though it may have been issued prior to final design being completed. Thurber should be retained to review final design, project plans and related documents prior to construction to confirm that they are consistent with the intent of the Report. Any differences that may exist between the Report's recommendations and the final design detailed in the contract documents should be reported to Thurber immediately so that Thurber can address potential conflicts.
- d) Construction Services: During construction Thurber should be retained to provide field reviews. Field reviews consist of performing sufficient and timely observations of encountered conditions in order to confirm and document that the site conditions do not materially differ from those interpreted conditions considered in the preparation of the report. Adequate field reviews are necessary for Thurber to provide letters of assurance, in accordance with the requirements of many regulatory authorities.

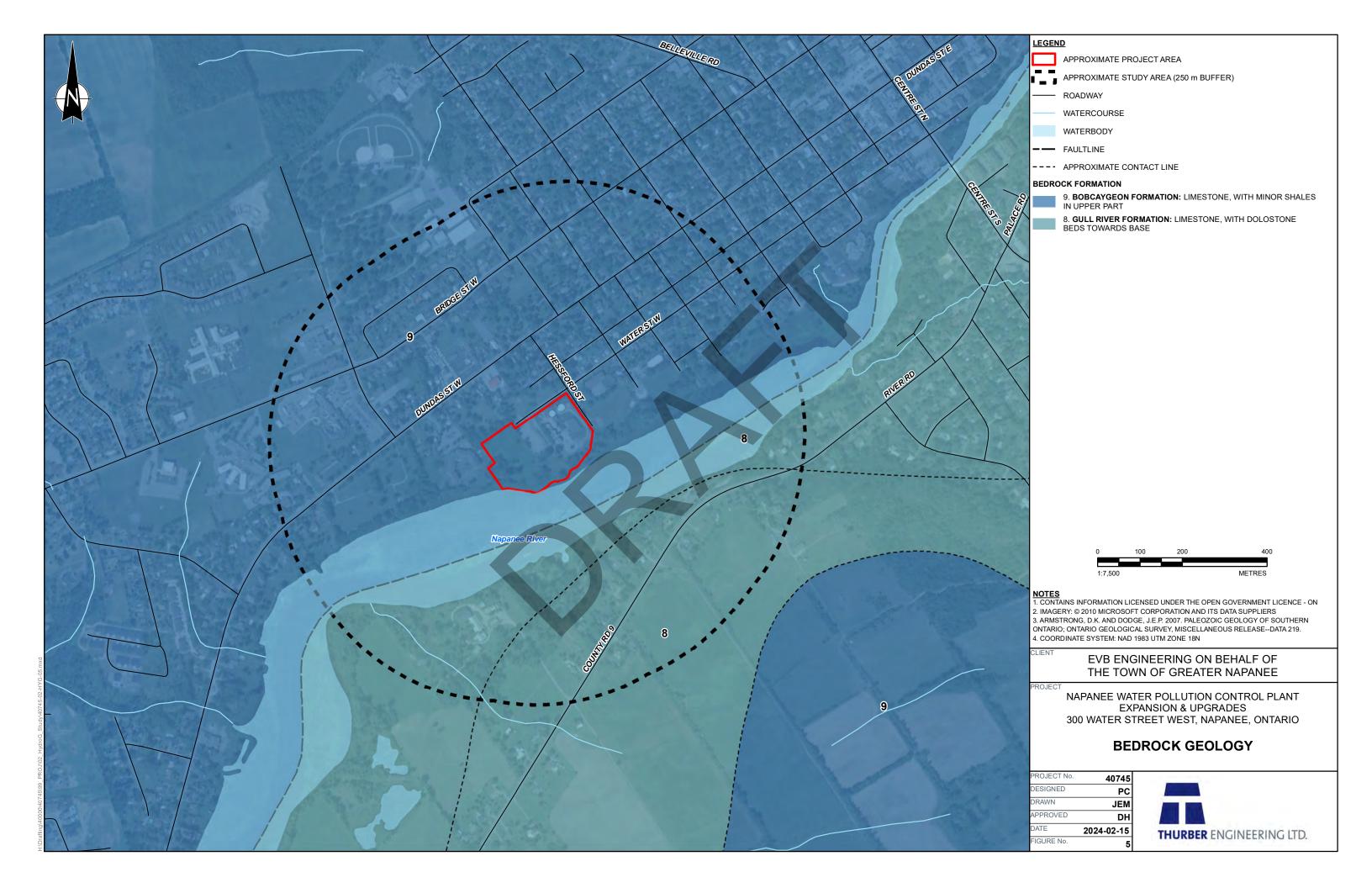
6. RELEASE OF POLLUTANTS OR HAZARDOUS SUBSTANCES

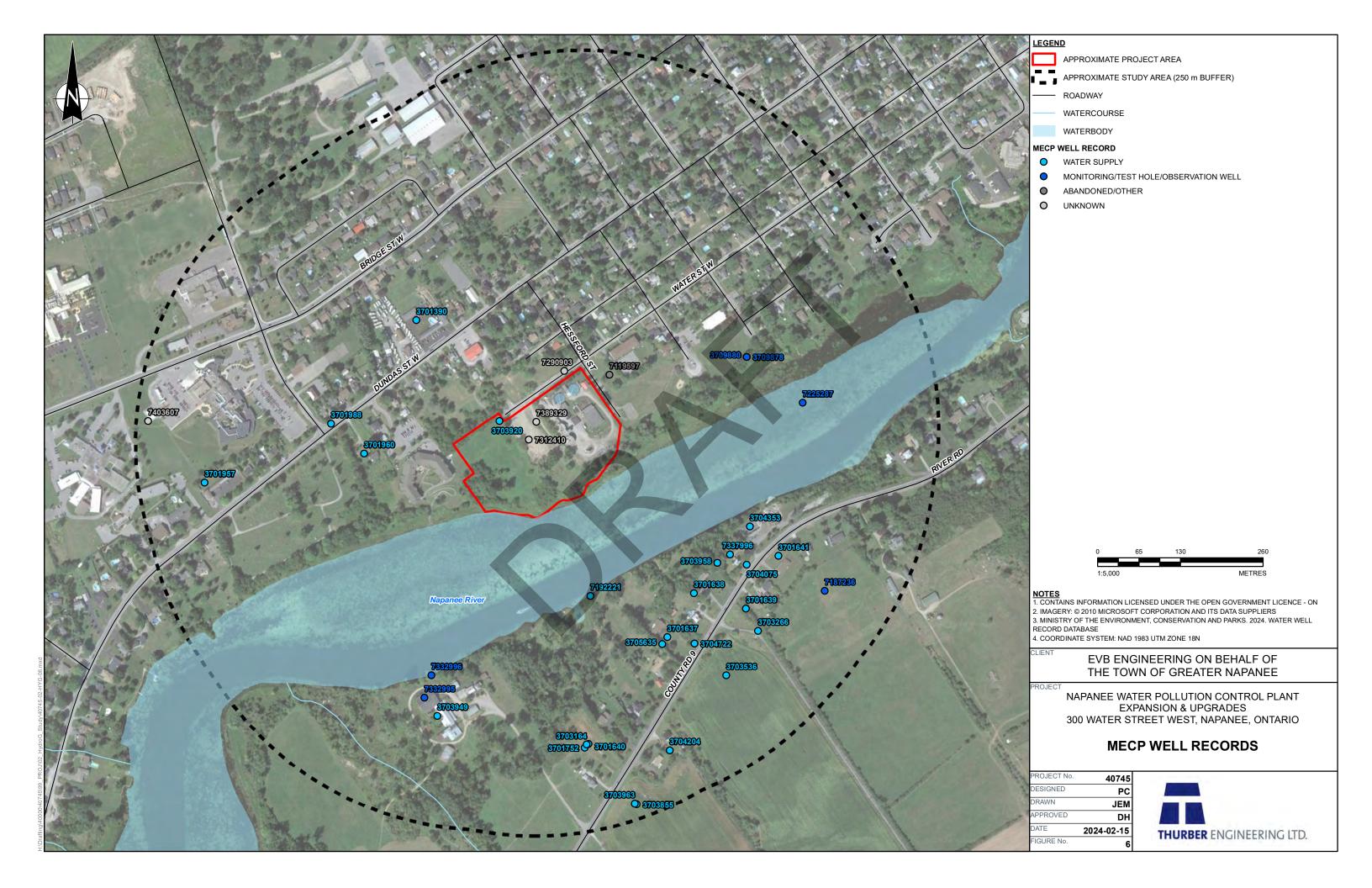

Geotechnical engineering and environmental consulting projects often have the potential to encounter pollutants or hazardous substances and the potential to cause the escape, release or dispersal of those substances. Thurber shall have no liability to the Client under any circumstances, for the escape, release or dispersal of pollutants or hazardous substances, unless such pollutants or hazardous substances have been specifically and accurately identified to Thurber by the Client prior to the commencement of Thurber's professional services.

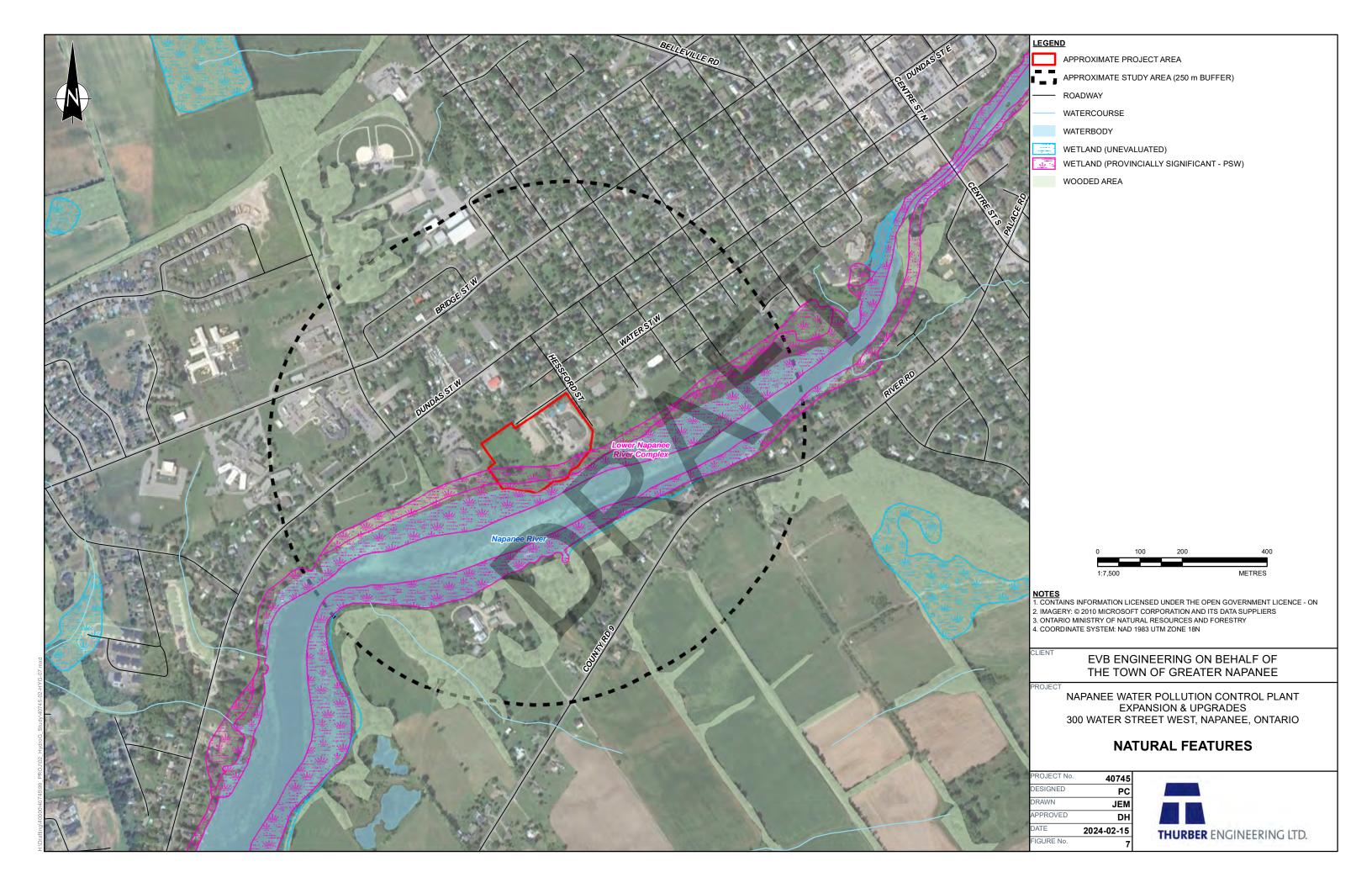

7. INDEPENDENT JUDGEMENTS OF CLIENT

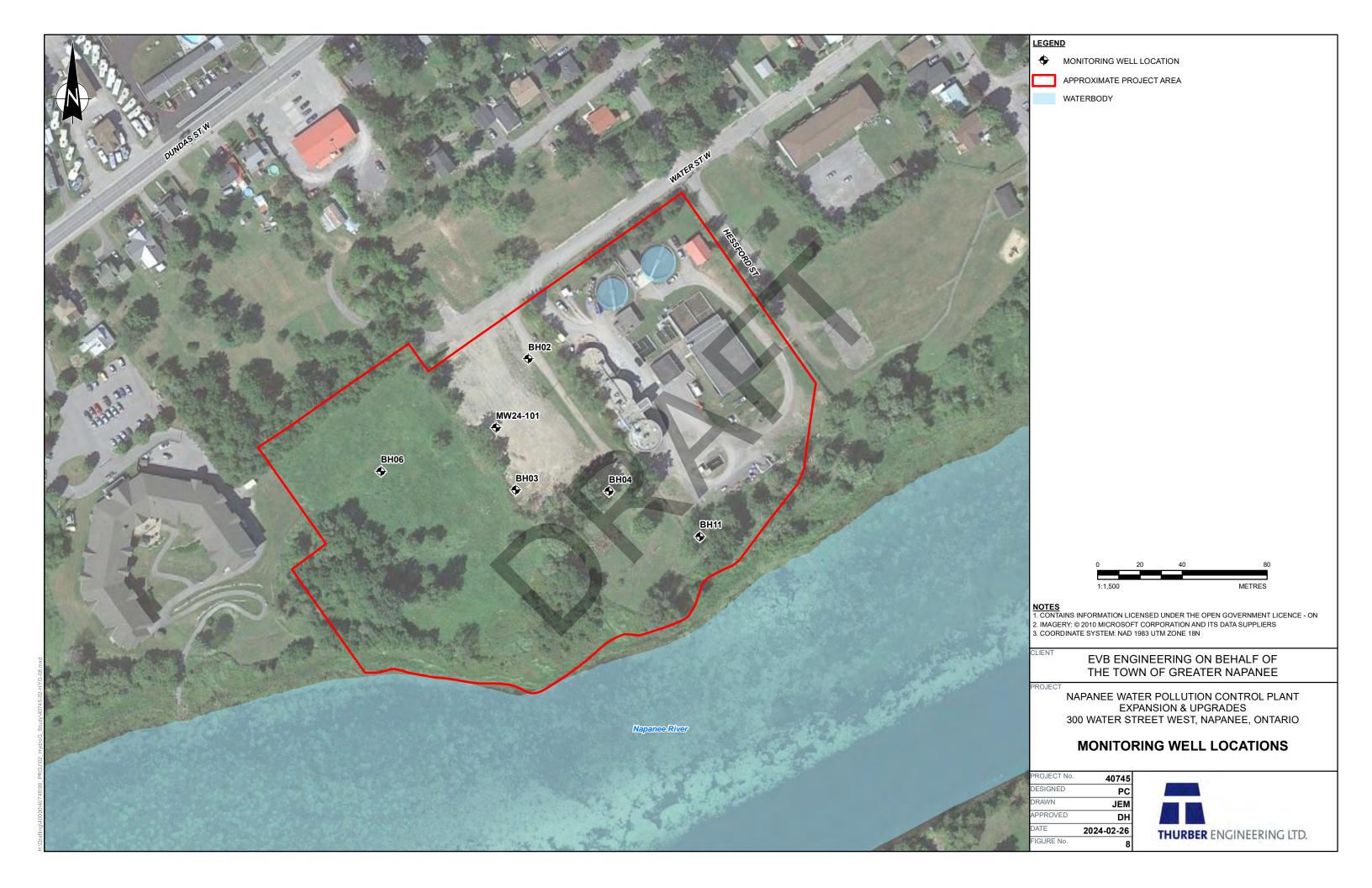

The information, interpretations and conclusions in the Report are based on Thurber's interpretation of conditions revealed through limited investigation conducted within a defined scope of services. Thurber does not accept responsibility for independent conclusions, interpretations, interpretations and/or decisions of the Client, or others who may come into possession of the Report, or any part thereof, which may be based on information contained in the Report. This restriction of liability includes but is not limited to decisions made to develop, purchase or sell land.

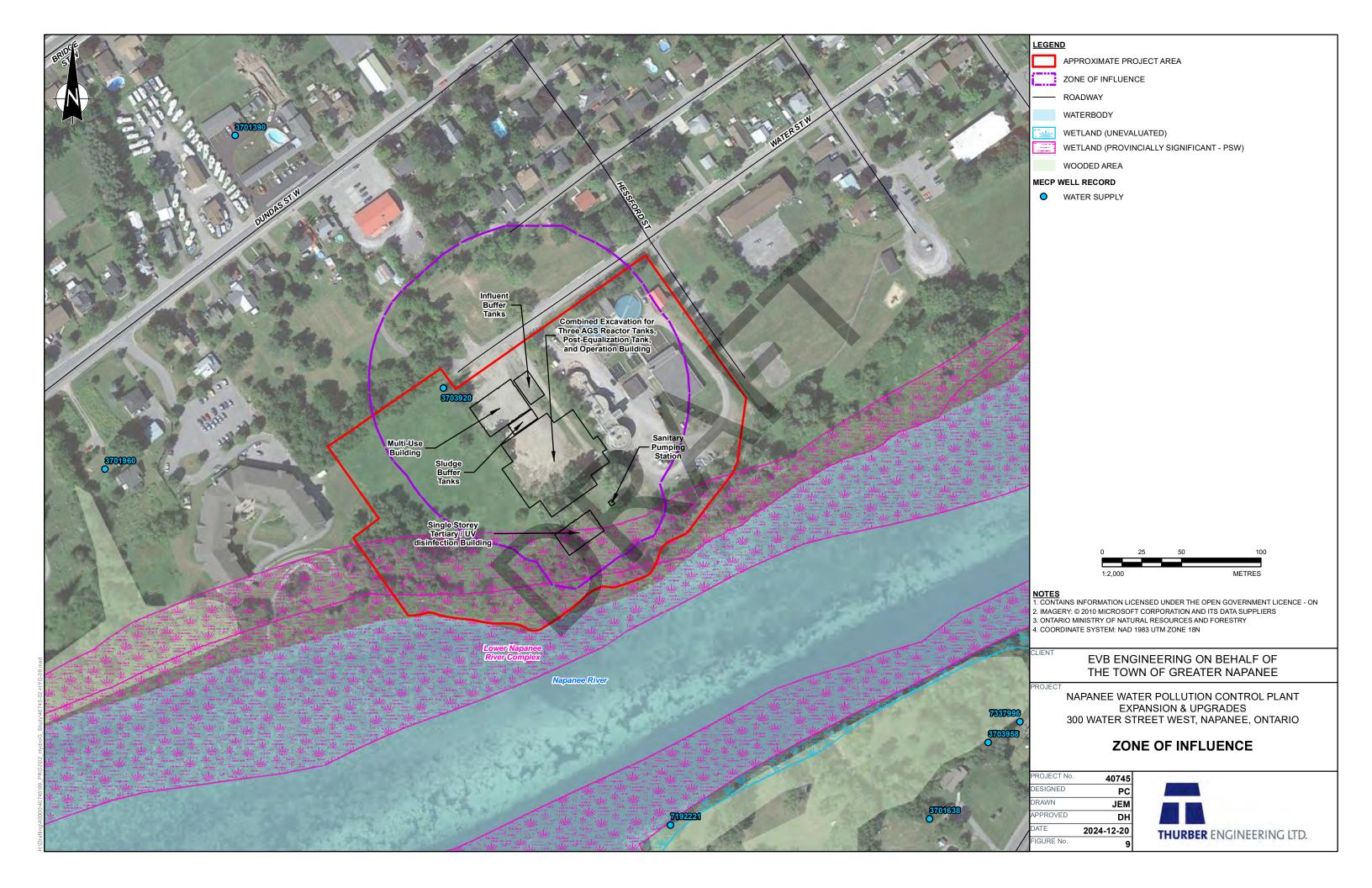


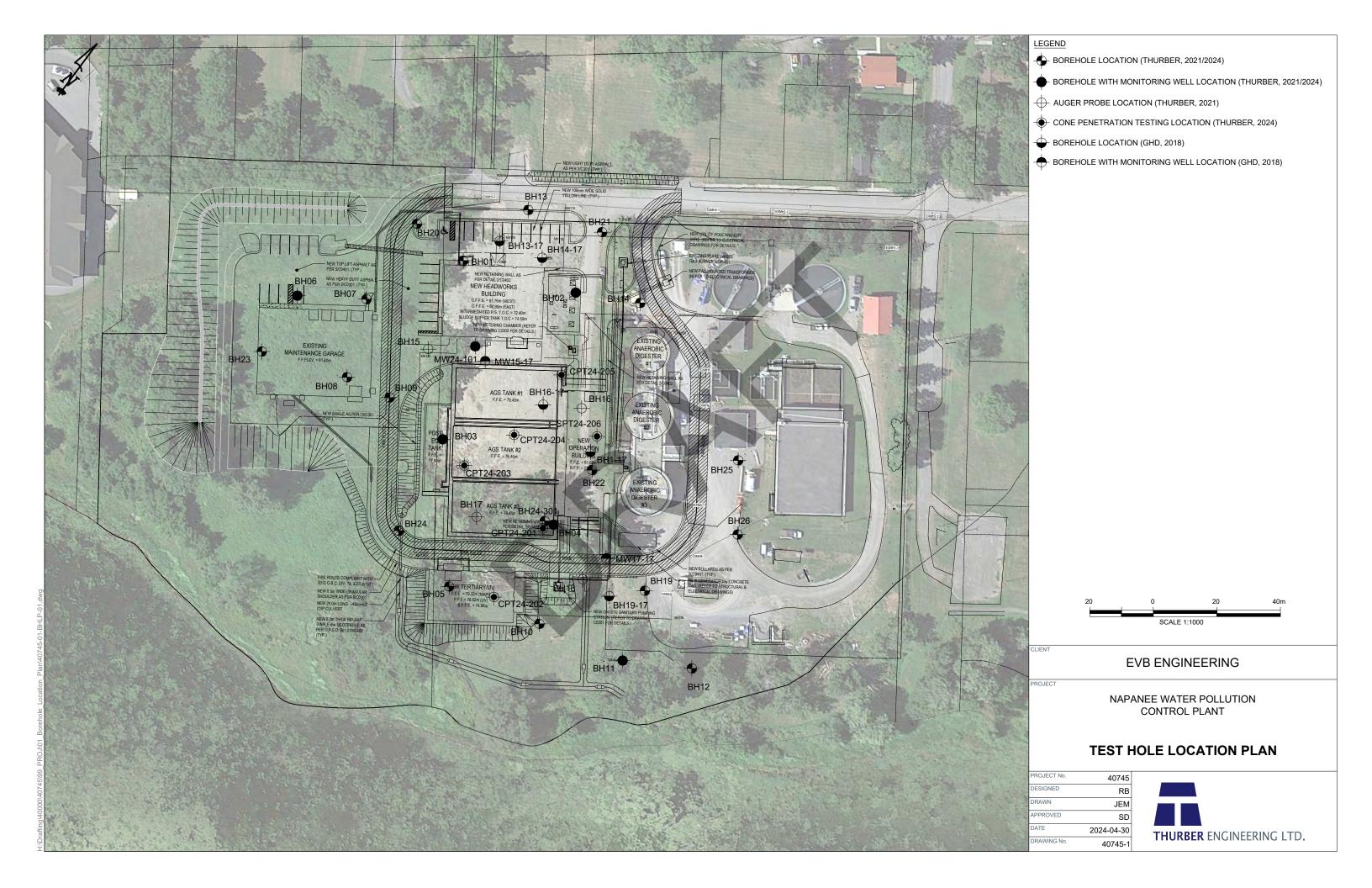












	Date	Depth of	Depth of	Static	UTM Z	Zone 18	
Well ID	Completed	Well (m)	Bedrock (m)	Level (m)	Easting	Northing	Well Type
3701390	1949-02-01	16.8	5.2	6.1	343242	4900530	Water Supply
3701637	1950-03-02	12.2	0.6	0.6	343637	4900031	Water Supply
3701638	1951-04-07	45.7	0.9	12.2	343679	4900100	Water Supply
3701639	1951-04-12	9.8	1.2	3	343761	4900076	Water Supply
3701640	1956-11-14	21.3	-	4.6	343513	4899863	Water Supply
3701641	1967-09-07	36.9	1.8	7.6	343812	4900159	Water Supply
3701752	1962-08-22	19.8	2.4	6.7	343507	4899857	Water Supply
3701957	1959-04-17	19.5	10.4	12.2	342909	4900274	Water Supply
3701960	1964-09-11	18.3	13.1	12.2	343160	4900320	Water Supply
3701988	1960-02-03	18.3	13.4	7.6	343108	4900367	Water Supply
3703164	1971-07-16	19.8	0.9	9.1	343510	4899862	Water Supply
3703266	1971-07-26	24.4	1.8	10.7	343780	4900041	Water Supply
3703536	1972-11-01	38.1	2.1	15.2	343730	4899971	Water Supply
3703855	1973-06-05	40.2	1.8	11.3	343589	4899768	Water Supply
3703920	1973-08-29	38.1	13.1	12.2	343373	4900371	Water Supply
3703949	1973-10-24	29.6	26.8	5.2	343275	4899907	Water Supply
3703958	1973-11-24	38.1	0.6	18.3	343716	4900148	Water Supply
3703963	1973-08-08	25.9	1.2	10.7	343586	4899769	Water Supply
3704075	1974-06-14	36.6	1.8	9.1	343762	4900145	Water Supply
3704204	1974-03-04	25.9	1.5	3.7	343641	4899853	Water Supply
3704353	1975-08-02	39.6	2.1	12.2	343767	4900205	Water Supply
3704722	1976-06-28	32	1.5	6.1	343680	4900021	Water Supply
3705635	1980-08-18	30.5	1.8	3.7	343629	4900020	Water Supply
3709878	2004-03-18	3.4	-		343762	4900472	Test Hole
3709880	2004-03-16	4.6	-	-	343762	4900472	Test Hole
7119597	2008-11-21	6.4	- 1	-	343546	4900444	Abandoned-Other
7187236	2012-09-11	6.1		-	343885	4900104	Test Hole
7192221	2012-08-17	11.9	-	1.8	343516	4900096	Water Supply
7225287	2014-05-12	2.8	-	-	343850	4900400	Monitoring and Test Hole
7290903	2017-05-19	0	-	-	343475	4900450	Unknown
7312410	2017-11-28	0	-	-	343419	4900342	Unknown
7332995	2018-12-14	2.4	-	-	343255	4899936	Observation Wells
7332996	2018-12-14	2.4	-	-	343266	4899971	Observation Wells
7337996	2019-07-19	49.4	-	14.1	343736	4900161	Water Supply
7389329	2021-02-24	0	-	-	343431	4900370	Unknown
7403607	2021-09-08	0	-	-	342820	4900371	Unknown

APPENDIX C RECORD OF BOREHOLE SHEETS

Napanee Water Pollution Control Plant Expansion PROJECT

N 4 900 363.3 E 343 393.4 LOCATION

STARTED February 23, 2021 February 23, 2021 COMPLETED :

Project No. 30726

SHEET 1 OF 2 DATUM Geodetic

<u>ا</u> پ	НОО	SOIL PROFILE	1.	1	SA	MPL		CO	MMEN	ITS		J 31	nat V - rem V -	•	Cp	u, KPa Q - X en ≜		و <u>ب</u>	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CO RESIS	ONE PETANCE	ENETRA PLOT	ATION	W/	O ATER C	10 L ONTEN	60 T, PE	80 RCENT - wl 40		ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIO
		GROUND SURFACE		80.9							•								
		CLAY, silty, trace to some gravel, trace to some sand, trace organics, stiff to very stiff, brown, moist: (FILL)		0.0		SS	11							0					
1	ers	Occasional brick fragments in SS2			2	ss	9						0						
2	Hollow Stem Augers	Occasional cobbles		78.7	3	ss	16						C						
	H	CLAY, silty, trace sand, occasional gravel, frequent sand seams, stiff, grey, moist		2.2		ss	4	Grain Size Analy Gr 1%/ Sa 37%/	sis: /Si 41%	6/ Cl 2	1%		+		- a	,			
3					5	ss	8								0				
5		SAND, some silt to silty, trace Gravel, trace clay, loose, brown, wet		75.3 5.6	6	SS	10								O				
					7	ss	7	Grain Size Analy Gr 3%/ Sa 84%/	sis: /Si 12%	%/ CI1	%			0				FI	
8	NQ Coring	LIMESTONE slightly weathered to fresh, strong to very strong, thinly bedded, grey with black mudstone interbeds and occasional calcite filled vugs (Bobcageon Formation)		73.8 7.1		RUN		UCS = 113.5MF TCR=100% SC UCS = 75MPa (S RQE e) (PL1	0=87% `)							3 2 1 2	
9		Subvertical fracture at 8.6 m (125 mm in length)			2	RUN		TCR=100% SC UCS = 119MPa	R=92% (Avera	⊳ RQE ge) (PL)=92% .T)							3 2 0 2	
		GROUNDWATER ELE			<u> </u>	Ī	<u></u>	ATER LEVEL	. IN W	'ELL/I	PIEZON	I 1ETER	<u> </u>	LOGG	<u> </u>	: RB			

Napanee Water Pollution Control Plant Expansion PROJECT

LOCATION N 4 900 363.3 E 343 393.4

STARTED February 23, 2021 February 23 2021

Project No. 30726

SHEET 2 OF 2 DATUM Geodetic

		ETED : February 23, 2021						i	CUEAD CEDENCELL CO. KDo.	DATON	Geodetic
щ	ДOР	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - X rem V - ♥ Cpen ▲	ي د	
DEPTH SCALE (metres)	Ē		TO.		~		3m	DYNAMIC CONE DENETRATION	rem V - Cpen A 20 40 60 80	N T N	PIEZOMETEI OR
netri	ĮG į	DESCRIPTION	A PL	ELEV.	1BEF	TYPE	.S/0	DYNAMIC CONE PENETRATION RESISTANCE PLOT	WATER CONTENT, PERCENT	─ ĔĔ	STANDPIPE
- -	BORING METHOD	DECOMI HON	STRATA PLOT	DEPTH (m)	NUMBER		BLOWS/0.3m	2	wp 	ADDITIONAL LAB. TESTING	INSTALLATIO
	- BK		ST	("")	Ļ		B	20 40 60 80 100	10 20 30 40	<u> </u>	
	\vdash		+		+					1	
		END OF BOREHOLE AT 10.2m.		70.7 10.2				1			
		BOREHOLE BACKFILLED WITH HOLEPLUG.									
11											
12											
13				1							
				1							
				1							
				1							
14											
ı 				1							
				1							
15						V					
					L						
40			I.		И						
16											
					1						
				1							
17				1							
				1							
				1							
				1							
18				1							
10				1							
				1							
				1							
				1							
19				1							
				1							
				1							
				1							
				1							
		GROUNDWATER ELE	VAT	TIONS	-					•	/
		¥ WATER LEVEL UPON COI				_	Z 14	VATER LEVEL IN WELL/PIEZOM	ETED		
		- WATER LEVEL UPON CO	vir_Lt	LIION		_	- V\	VALER LEVEL IN WELL/PIEZON			
									CHECKED : JD	A/MTB	THUE

Napanee Water Pollution Control Plant Expansion PROJECT

N 4 900 376.0 E 343 427.4 LOCATION

STARTED February 22, 2021 February 23 2021

Project No. 30726

SHEET 1 OF 2 DATUM Geodetic

	۵	SOIL PROFILE			S۸	MPL	ES	COMMENTS	SI	IEAR S	TRENG	TH: Cu,	KPa			_
(metres)	BORING METHOD	SOIL PROFILE	T ⊢	1	JA	IVICL		CONTINIEN 19			TRENG	Q - Cper	- X	ADDITIONAL LAB. TESTING	DIEZOMET	TE'
res)	MET		STRATA PLOT		ĸ	ļ,	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	2		40 	60 ·	80 	NON STI	PIEZOMET OR	
met	NG	DESCRIPTION	IA F	ELEV.	NUMBER	TYPE	VS/0	RESISTANCE PLOT			ONTEN		CENT] 등 뜻	STANDPII INSTALLAT	
֓֞֞֞֝֞֞֝֞֝֞֝֞֝֞֝֝֞֝֞֝֞֝֝֡֡	l Ri		IRA.	DEPTH (m)	Š	 -	LOV	20 40 60 80 100			⊖ ^W	30	l wl 40	[A 8]	INSTALLAT	ıı
	ığ.		ST	()			В	20 40 60 80 100	1	0	20	30	40	+		_
		GROUND SURFACE FILL (100mm)	- - -	79.0										+		
		TOPSOIL (75mm)		0.1 0.2	١.	00	47									H
		CLAY, silty, trace to some sand, very stiff to stiff, brown, moist		1	1	SS	17				0					H
		County Stown, moset		1											₹ Shallow	H
				1											▼ Deep	H
1				1	2	SS	17	Grain Size Analysis: Gr 0%/ Sa 18%/Si 38%/ Cl 44%			⊩		0 5	3		H
					l -			G. C76, Ga 1676, G. GC76, G. 1176							Bentonite	H
	ers			1												H
	Aug			1												H
	tem			1	3	SS	13				0					H
2	Hollow Stem Augers															H
	호			1												
				1											Filter Sand	H
					4	SS	5					7				ı
								_]							
3				1	_											
					5	SS	5									H
		Becoming grey														
																ı
,																ı
4				1											Slotted	ı
				1											Screen	ı
																ı
								Grain Size Analysis: Gr 0%/ Sa 1%/ Si 25%/ Cl 74%								H
5		Frequent sand seams (2-3 mm thick) in		1	6	SS	15	Gr 0%/ Sa 1%/ Si 25%/ Cl 74%					ф			H
0		SS6				K										ı
																H
		Rock fragments in SS7		73.3		ee.	50/							l		H
	-	LIMESTONE, slightly weathered to fresh, strong to very strong, thinly bedded, flat to wavy foliation, fossiliferous, fine grained matrix with occasional <5mm clasts, with	I	5.7		SS	0.050							FI		
6		wayy foliation, fossiliferous, fine grained						UCS = 105.9MPa						1		H
		black shale interbeds (15-30mm) and												3	Filter Sand	
		occasional calcite infilling and calcite filled vugs (Bobcageon													I [·	\mathbb{H}
		Formation)			1	RUN	l	TCR=97% SCR=87% RQD=70% UCS = 113MPa (Average) (PLT)						3		Ħ
	Coring		H	1								1		3		
7	ပ္သ											1			[:	뷤
	ğ			1								1		3	-	Ħ.
			Ь	1								1		1		<u>.</u>
		vertical fracture at 7.7m (125mm long)	\vdash	-										4	Slotted Screen	Ħ
0		15.50ai irastaro at 7.7m (120mm long)	Ħ	1										*	:	
3			H	1	2	RUN		TCR=98% SCR=89% RQD=82% UCS = 89MPa (Average) (PLT)						2	:	目
			H	1				- (· · · · · · · · · · · · · · · · · ·						2	:	片.
				1								1		1		Ħ
			上	70.2	L							1		1	[且
9		END OF BOREHOLE AT 8.84m.		8.8												_
-		Deep Monitoring Well installation consists														
		Deep Monitoring Well installation consists of 50mm diameter Schedule 40 PVC pipe with a 2.44m slotted screen.														
		Shallow monitoring well was installed in a separate borehole drilled approximately 1m away from the sampled borehole. The														
			1	10110												_
		GROUNDWATER ELE	VΑŢ	IONS		_	_									
		$^{ u}$ water level upon coi	MPLE	ETION		Ā	<u> </u>	ATER LEVEL IN WELL/PIEZON	IETER		LOGGE	D :	RB			
							۸.	oril 14, 2021				(ED :	JDA/M		THU	

Napanee Water Pollution Control Plant Expansion PROJECT

LOCATION N 4 900 376.0 E 343 427.4

STARTED February 22, 2021 February 23, 2021 COMPLETED :

Project No. 30726

SHEET 2 OF 2 DATUM Geodetic

	2	SOIL PROFILE			SA	MPL	ES	(COMME	NTS		S	HEAR S	TRENG	TH: Cu,	KPa X	(5)	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC RE:	CONE F	ENETR E PLOT	ATION	W	20 L ATER C	40 L ONTEN	60 L T. PERO	80 LENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
í	BOR		STR/	(m)	ž	Ľ	BLO	20 4	0 60	80 I	100		/p ├ ── 10 	20 	30	40	4 ₹	
		shallow well installation consists of a																
		50mm diameter Schedule 40 PVC pipe with a 3.04 m slotted screen.																
11		DEEP WELL WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Feb 26-21 0.80 78.20 Mar 03-21 0.70 78.30 Apr 14-21 0.60 78.40																
.		SHALLOW WELL WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m)																
12		Feb 26-21 0.70 78.30 Mar 12-21 0.60 78.40																
		Apr 14-21 0.60 78.40																
13									1									
										1								
4											>							
							1											
							4											
15		_				3												
								•										
16																		
17																		
8																		
19																		
19																		
		GROUNDWATER ELE	L VAT	IONS	<u> </u>	<u> </u>						<u> </u>						
		$\overline{igsigma}$ water level upon con				Ī		/ATER LEV	EL IN \	VELL/	PIEZON	ETER		LOGGI	ED :	RB		
								pril 14, 2021						CHEC	KED :	JDA/M	ITB	THUR

Napanee Water Pollution Control Plant Expansion PROJECT

N 4 900 314.4 E 343 421.8 LOCATION

STARTED February 23, 2021 February 24 2021

Project No. 30726

SHEET 1 OF 2 DATUM Geodetic

ш	9	SOIL PROFILE			SA	MPL	ES	COMMENTS	S	HEAR S nat V -	TRENC	TH: Cu, I Q - Cpen	∢Pa X	(0	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	W	20 L ATER C	40 	60 IT, PERC	80 ENT	ADDITIONAL LAB. TESTING	PIEZOMETEI OR STANDPIPE INSTALLATIO
	T T	GROUND SURFACE	Ŋ.	76.4			В	1 1 1 1			1	1	10		
		PEAT	******	76.0	1	ss	2						720)	
		CLAY, silty, trace sand, very stiff to firm, brown, moist		0.4											▼ _{Deep}
1		Trace to some organic material in SS2			2	SS	10						0		
2					3	SS	8						•		Bentonite
					4	SS	14					0			
3		Frequent silt lenses (1mm thick) in SS5			5	SS	8	Grain Size Analysis: Gr 0%/ Sa 1%/ Si 30%/ Cl 69%			 -				
4	Hollow Stem Augers	Frequent silt lenses (1mm thick) in SS5 and SS6, becoming grey													Filter Sand
•	Hollow S														
5					6	ss	5	Note: Vane test completed in separate borehole adjacent to sampled borehole.				•	0		
		SILT, some sand, some clay, trace gravel, frequent sand interbeds, compact, brown, wet		70.8 5.6											Slotted Screen
6		blown, wet		V	7	ss	10	Grain Size Analysis: Gr 1%/ Sa 17%/Si 68%/ Cl 14%				0			
7				69.2											
	_	LIMESTONE, fresh, strong to very strong, thinly bedded, flat to wavy foliation, fossiliferous, fine grained matrix with occasional <5mm clasts, interbedded with		7.2				UCS = 130.6MPa						FI 1	1 1
8	NQ Coring	black mudstone and occasional calcite infilling (Bobcageon Formation)			1	RUN		TCR=93% SCR=97% RQD=92% UCS = 157MPa (Average) (PLT)						3	
														1	
9		Highly fractured zone at 9.2m		-				TCR=07%, SCR=77% DAD-75%						2	Slotted
					2	RUN		TCR=97% SCR=77% RQD=75% UCS = 104MPa (Average) (PLT)						3	
		GROUNDWATER ELE				<u> </u>	_			<u> </u>	1		I	<u>'</u>	1.11
		extstyle e	MPLE	ETION		Ā	Z _W	ATER LEVEL IN WELL/PIEZON	ETER		LOGG	ED :	RB		

Napanee Water Pollution Control Plant Expansion PROJECT

N 4 900 314.4 E 343 421.8 LOCATION

STARTED February 23, 2021 Project No. 30726

SHEET 2 OF 2

CC	MPLI	ETED : February 24, 2021								DATUM	Geodetic
Ш	4OD	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - X rem V - ● Cpen ▲	_ <u>0</u>	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	20 40 60 80 WATER CONTENT, PERCENT wp	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIO
			+								l.H.
	4	END OF BOREHOLE AT 10.26m.	H	66.2 10.3						3	
				10.0							
		Deep Monitoring Wells installation consists of 50mm diameter Schedule 40 PVC pipe with a 2.44m slotted screen.									
11											
		Shallow monitoring well installed in a separate borehole drilled approximately 1 m away from the sampled borehole. Shallow monitoring well installation consists of a 50mm diameter Schedule 40 PVC pipe with a 3.05m slotted screen.									
12		DEEP WELL									
		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m)									
		Feb 26-21 -0.20 76.64 Mar 03-21 0.70 75.74									
		Apr 14-21 0.60 75.84									
13		SHALL OWNAFF!									
		SHALLOW WELL WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m)									
		Feb 26-21 0.20 76.24 Mar 12-21 -0.20 76.64									
		Apr 14-21 -0.10 76.54									
14		(Negative water level indicates water level									
		(Negative water level indicates water level measured above the ground surface)									
15											
			1								
16											
17											
17											
18											
19											
		GROUNDWATER ELE				_	_				
		$^{ u}$ water level upon con	MPLE	ETION		Ī		ATER LEVEL IN WELL/PIEZON			
							A	oril 14, 2021	CHECKED : JD/	VMTB	THUR

Napanee Water Pollution Control Plant Expansion PROJECT

N 4 900 313.1 E 343 466.0 LOCATION

STARTED February 24, 2021 SHEET 1 OF 2 February 24, 2021 DATUM Geodetic COMPLETED :

پ	ПОН	SOIL PROFILE	1.	 	SA	MPL			COMN	/IENT	S		J Sr	HEAR S nat V - rem V -	. INCINC	Cr	ou, KP Q - X oen ≜	u	4₽ VG	
(metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAM R 20	\geq	_		ON 00	W/	0 L ATER C p 	40 L ONTE	60 	80 	IT	ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIPE INSTALLATIO
		GROUND SURFACE	0,	77.2	2			l												
		ORGANICS		76.7	1	ss	12										0			
1		CLAY, silty, trace sand, very stiff to soft, brown, moist		0.5		ss	9								0		0			Shallow Bentonite
2					3	ss	11											Œ	.	▼ Deep
		Becoming grey			4	ss	10								C			>>4	\	Filter Sand
3		Frequent silt lenses (1mm thick) in SS5			5	ss	12	Grain Size A Gr 0%/ Sa	Analysis a 2%/ Si	45%/	CI 53%					0		>> 4	.	
5	Hollow Stem Augers				6	SS	3										•	590)	Slotted Screen
7					7	ss	2									0				Filter Sand
8		Frequent silt/sand lenses in SS8 and SS9			8	SS	1								0					Slotted Screen
9					9	ss	7	Grain Size A Gr 0%/ Sa	Analysis a 5%/ Si	: 70%/	CI 25%			 ⊢ ~	Э -1					Slotted Screen
		GROUNDWATER ELE	<u>Ι</u>	TIONS																
		WATER LEVEL UPON COM			•	Ī		/ATER LE pril 14, 202		1 WE	LL/PIE	ZOM	ETER		LOGG			RB DA/MTI	-	THUR

Napanee Water Pollution Control Plant Expansion PROJECT

LOCATION N 4 900 313.1 E 343 466.0

STARTED February 24, 2021 COMPLETED : February 24, 2021

Project No. 30726

SHEET 2 OF 2 DATUM Geodetic

С	OMP	LE	TED : February 24, 2021									Geodetic
щ	9	3	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V -	, 0	
DEPTH SCALE (metres)	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	rem V -	NOI E	PIEZOMETER OR STANDPIPE INSTALLATION
<u> </u>	\blacksquare	\dashv			67.0							
-			END OF BOREHOLE AT 10.16m UPON AUGER REFUSAL ON PROBABLE BEDROCK.	<i>1282</i>	67.0 10.2							[.H]
- 11			Deep Monitoring Well installation consists of 50mm diameter Schedule 40 PVC pipe with a 3.05m slotted screen.									
			Shallow monitoring well installed in separate borehole drilled approximately 1m away from the sampled borehole. Shallow monitoring well installation consists of a 50mm diameter Schedule 40 PVC pipe with a 3.05 m slotted screen.									-
-12			DEEP WELL WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Feb 26-21 1.80 75.36 Mar 02-21 1.80 75.36 Apr 14-21 1.80 75.36									-
- 13]
			SHALLOW WELL WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Feb 26-21 2.90 74.26 Mar 12-21 1.00 76.16 Apr 14-21 1.20 75.96									-
-14												- :
- - 15												
-16												- - -
-												
- 17 -												- . .
- 18												
19												-
]
_			GROUNDWATER ELEV	 /AT	IONS							

THURBER2S TEL-30726.GPJ 4-30-24

 $\overline{\underline{\lor}}$ WATER LEVEL UPON COMPLETION

▼ WATER LEVEL IN WELL/PIEZOMETER April 14, 2021

Napanee Water Pollution Control Plant Expansion PROJECT

N 4 900 278.5 E 343 451.1 LOCATION

STARTED February 25, 2021 SHEET 1 OF 2 February 25, 2021 DATUM Geodetic COMPLETED

ш	40D	SOIL PROFILE		,	SA	MPL	ES	COMMENTS	3	SHE/ na	at V - ¶ n V - ¶	RENGT	11. UU, Q - Cnen	i∖Fd X ▲	ا ي پـِ	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENE RESISTANCE PL	TRATION OT	20 WATE	40 L ER CO	NTENT	0 L PERC	80 	ADDITIONAL LAB. TESTING	PIEZOMETEI OR STANDPIPE INSTALLATIO
	ВО		STR	(m)	ľ		BL	20 40 60 8	0 100	10	20		0	40	ا نـ ` ا	
		GROUND SURFACE		76.3	3							_				
		ORGANICS, some sand, trace silt, trace clay, black, moist, loose		0.0												
		day, black, molet, loose		3	1	SS	8				0					
				3												
		SAND, some silt, trace clay, very loose,		75.6 0.1	7											
,		brown, moist		:]												
1				:]	2	SS	2			P						
				74.9	_											
		CLAY, silty, trace sand, stiff to firm,		1.4												
		brown, moist			3	SS	8					0				
2					3	33	0					O				
_																
					4	ss	7					0				
3																
							l									
		Trace gravel			5	SS	11							•	1	
4																
					L											
	(0)															
	rgers							Grain Size Analysis								
_	m At	Becoming grey			6	SS	7	Grain Size Analysis: Gr 0%/ Sa 1%/ Si 20%/ C	1 79%			ŀ		- 068		
5	/ Ste					K										
	Hollow Stem Augers															
	-				Т											
6						1										
					7	ss	4						0			
7																
8					8	ss	3							φ		
J																
9											Ĭ			1		
					\vdash											
		Varied hopeming range - till			9	ss	28					0				
		Varved, becoming very stiff														
		GROUNDWATER EL		TIONS	'					1						
						1	Z 14	ATER LEVEL IN WEL	I /DIEZO!	ACTED						
		- WATER LEVEL UPON (JUIVIPL	EHUN		_	- V	ATER LEVEL IN WEL	L/PIEZOľ	VIE I EK		OGGE		RB	_	
											C	HECK	ED :	JDA/MT	В	THUR

Napanee Water Pollution Control Plant Expansion PROJECT

LOCATION N 4 900 278.5 E 343 451.1

STARTED February 25, 2021 Project No. 30726

SHEET 2 OF 2

_	TED : February 25, 2021			_			T	1 -	NIE A D	TDENC	TII. 0: 10		ATUM	Geodetic
	SOIL PROFILE			SA	MPL	ES	COMMENTS	_	nat V rem ∨	IKENG ⁻ - • - •	TH: Cu, KI Q - X Cpen ▲	ra •	ا ي بـ	
	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	V	20 /ATER 0 wp ──	ONTENT	60 8	.0 :NT vI	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIO
<u> </u>		STI	(111)	⊢		В	20 40 60 80 100		10	20	30 4	0	\vdash	
	SILT, some sand to sandy, trace to some		65.3 11.0	10	ss	wн	Grain Size Analysis: Gr 0%/ Sa 19%/Si 71%/ Cl 10%			5				
	clay, very loose, wet		04.7				Gr 0%/ Sa 19%/Si /1%/ Ci 10%			0				
	END OF BOREHOLE AT 11.58m UPON AUGER REFUSAL ON PROBABLE BEDROCK.		64.7 11.6	Ī										
	BEDROCK. BOREHOLE OPEN UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE TO SURFACE.													
					K									
	GROUNDWATER ELE	 VAT	 TONS											
					Ī	Z _W	/ATER LEVEL IN WELL/PIEZON	/IETEF	2	LOGGE	ED :	RB		
	GROUNDWATER ELEY				Ī	<u></u>	/ATER LEVEL IN WELL/PIEZON	 //ETEF	<u> </u>	LOGGE		RB JDA/MT	В	

Napanee Water Pollution Control Plant Expansion PROJECT

LOCATION N 4 900 323.2 E 343 358.1

STARTED February 24, 2021 February 24 2021

Project No. 30726

SHEET 1 OF 1 DATUM Geodetic

ш	8	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR S	STRENGTH: Cu, KPa -	(D	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	20 WATER 0	Content, Percent	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIO
	BOF	ODOLIND OLIDEAGE	STR	(m)			BLC	20 40 60 80 100	10	20 30 40	- 1	
		GROUND SURFACE CLAY, silty, some gravel, trace sand, some organics, occasional brick fragments firm, reddish brown, moist: (FILL)		78.5 0.0 77.8	1	ss	6			0	>>•	
1		CLAY, silty, trace sand, firm to very stiff, brown, moist		0.7	2	SS	3			0		Bentonite
2	Hollow Stem Augers				3	ss	13	Grain Size Analysis: Gr 0%/ Sa 6%/ Si 56%/ Cl 38%		0	>>•	i i
	НОН				4	ss	7			0	>>	Filter Sand :
3					5	ss	8	X		0	>>•	
4		SAND, silty, some clay to clayey, loose, brown, wet (bedded in 20 to 50 mm layers)		74.4 4.1								Slotted Screen
5					6	SS	7	Grain Size Analysis: Gr 0%/ Sa 44%/ Si 30%/ Cl 26%		0		
6		END OF BOREHOLE AT 5.79m UPON AUGER REFUSAL ON PROBABLE BEDROCK. Monitoring Wells installation consists of 50mm diameter Schedule 40 PVC pipe	14.	72.7 5.8								
7		with a 3.05m slotted screen. WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Feb 26-21 -0.23 78.72 Mar 12-21 -0.30 78.79		•								
8		Apr 14-21 -0.24 78.73 (Negative water level indicates water level measured above the ground surface)										
9												
		GROUNDWATER ELE	L VAT	IONS			<u> </u>					
		¥ WATER LEVEL UPON COM				Ī	Z v	/ATER LEVEL IN WELL/PIEZON	METER	LOGGED : RB	A/MTB	THUR

Napanee Water Pollution Control Plant Expansion PROJECT

N 4 900 335.3 E 343 376.2 LOCATION

STARTED February 26, 2021 Project No. 30726

SHEET 1 OF 1

- ((JMPLE	ETED : February 26, 2021						 	OUEAR OTREVET: 2 (T	DATUM	Geodetic
Ш	Q Q	SOIL PROFILE		,	SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - X rem V - ● Cpen ▲	그의	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	20 40 60 80 WATER CONTENT, PERCENT WP	ADDITIONAL LAB. TESTING	PIEZOMETEI OR STANDPIPE INSTALLATIO
		GROUND SURFACE		78.5 0.0							
		CLAY and ORGANICS, silty, some sand, moist, firm, black (topsoil) CLAY, silty, trace to some sand, brown,		77.9 0.6	1	SS	5		0		
1	ers	CLAY, silty, trace to some sand, brown, moist, very stiff to stiff, frequent sand lenses (1mm thick)			2	ss	5	Grain Size Analysis: Gr 0%/ Sa 12%/Si 54%/ Cl 34%	o	>>•	
2	Hollow Stem Augers				3	ss	8		0	>>•	
3					4	ss	13		0	>>•	
•					5	ss	9	Grain Size Analysis: Gr 0%/ Sa 3%/ Si 48%/ Cl 49%		→	Ā
4											
5		Frequent sand layers (50mm to 75mm thick) in SS6			6	ss	11		0	>>•	
6		END OF BOREHOLE AT 5.89m UPON AUGER REFUSAL ON PROBABLE BEDROCK. BOREHOLE OPEN TO 4.88m AND		72.6 5.9							
7		WATER LEVEL AT 3.66m UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE.									
·8											
9											
		GROUNDWATER ELEV				Ī	Z _W	VATER LEVEL IN WELL/PIEZON		V/MTB	

Napanee Water Pollution Control Plant Expansion **PROJECT**

LOCATION N 4 900 312.0 E 343 386.0

STARTED February 26, 2021 February 26, 2021 COMPLETED

Project No. 30726

SHEET 1 OF 1 DATUM Geodetic

SAMPLES SOIL PROFILE COMMENTS DEPTH SCALE (metres) **BORING METHOD** ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT BLOWS/0.3m DYNAMIC CONE PENETRATION RESISTANCE PLOT OR STANDPIPE NUMBER TYPE ELEV. WATER CONTENT, PERCENT DESCRIPTION INSTALLATION DEPTH (m) 60 40 100 20 30 20 80 10 40 GROUND SURFACE 77.2 TOPSOIL: (150mm) **CLAY**, silty, some sand, some organics, firm, brown, moist 0.2 SS 5 0 76.5 0.7 **CLAY**, silty, trace sand, very stiff to stiff, brown, moist SS Grain Size Analysis: Gr 0%/ Sa 6%/ Si 57%/ Cl 37% 3 SS 15 0 -2 ∇ SS 12 0 3 Stem SS 5 9 Ю Becoming grey 0 5 SILT, sandy (bedded), trace clay, trace gravel, compact, brown, wet 5.6 -6 Grain Size Analysis: Gr 1%/ Sa 27%/Si 70%/ Cl 2% SS 70.6 END OF BOREHOLE AT 6.55m UPON END OF BOREHOLE AT 6.55m UPON AUGER REFUSAL ON PROBABLE BEDROCK.
BOREHOLE OPEN TO 6.25m AND WATER LEVEL AT 2.44m UPON COMPLETION.
BOREHOLE BACKFILLED WITH BENTONITE TO GROUND SURFACE. 7 -8 9 **GROUNDWATER ELEVATIONS**

 \overline{Y} WATER LEVEL UPON COMPLETION

TEL-30726.GPJ 4-30-24

JRBER2S

▼ WATER LEVEL IN WELL/PIEZOMETER

Napanee Water Pollution Control Plant Expansion PROJECT

N 4 900 314.9 E 343 400.5 LOCATION

STARTED February 26, 2021 February 26, 2021

Project No. 30726

SHEET 1 OF 1 DATUM Geodetic

		ETED: February 26, 2021											JATUM	Geodetic
щ	dot	SOIL PROFILE			SA	MPL	.ES	COMMENTS	S	HEAR S nat V -	TRENGTH: Cu Q Cpe	KPa X	ا 9	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	W	20 4 L ATER C	10 60 L L ONTENT, PER	80 	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIOI
	<u>а</u>	GROUND SURFACE	S	<u> </u>			В	20 40 00 80 100 		10 .	1 30	40		
		TOPSOIL: (600mm)		76.8 0.0 76.2	1	SS	4					65	jø	
1		SAND, trace to some silt, trace gravel, loose, brown, wet CLAY, silty, trace sand, stiff, brown, moist		75.9 0.9		ss	9				0			$ar{ar{\Delta}}$
	Solid Stem Augers	SAND, some gravel, trace silt, compact, brown, moist		75.5 1.4 75.0	2	ss	13			0				
2	Solid Ste	CLAY, silty, trace sand, very stiff, brown, moist SAND, trace gravel, trace silt, compact, brown, moist		74.6 2.3		33	13				0			
3		END OF BOREHOLE AT 2.90m.		73.9 2.9		SS	11			0				
-		BOREHOLE WATER LEVEL AT 0.91m UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE TO GROUND SURFACE.						X						
4														
5														
								>						
6														
7				Ť										
8														
9														
	•	GROUNDWATER ELE			-	Ī	Z _W	ATER LEVEL IN WELL/PIEZOM	IETER		LOGGED :	RB		

Napanee Water Pollution Control Plant Expansion PROJECT

LOCATION N 4 900 286.0 E 343 480.9

STARTED February 25, 2021 COMPLETED : February 25, 2021

Project No. 30726

SHEET 1 OF 1 DATUM Geodetic

-	_	ETED : February 25, 2021						T	SHEAD STRENGTH, O., 1/D-	I	Geodetic
щ	ē	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - X rem V - ♥ Cpen ▲	ی ر_ ا	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	rem V -	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIOI
		GROUND SURFACE	Ť	76.5							
		CLAY, silty, some gravel, some sand, some organics, stiff, brown, moist: (FILL)		76.5 0.0	1	ss	14		0		
1		SAND, silty, trace clay, trace gravel, loose, brown, moist		0.7	2	SS	4		0		
2	Solid Stem Augers	CLAY, silty, trace to some sand, very stiff, brown, moist; with sand layers up to 100mm thick		75.1 1.4		ss	13			>>•	
	Solic	Becoming grey			4	ss	10		0	>>	
3					5	ss	9	Grain Size Analysis: Gr 0%/ Sa 15%/Si 24%/ Cl 61%	0		
4		END OF BOREHOLE AT 3.66m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH HOLEPLUG.		72.9 3.7							
5											
6											
7											
8											
9											
		GROUNDWATER ELE	\/^7	TONE							
		WATER LEVEL UPON CON				Ī	Z _V	VATER LEVEL IN WELL/PIEZON		/MTB	THUR

Napanee Water Pollution Control Plant Expansion PROJECT

N 4 900 293.0 E 343 503.0 LOCATION

STARTED February 25, 2021 February 25, 2021 COMPLETED :

Project No. 30726

SHEET 1 OF 1 DATUM Geodetic

Щ	阜	SOIL PROFILE			SA	MPL		COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - Q - Q - Tem V - Cpen	وَ بِـ	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	20 40 60 80 WATER CONTENT, PERCENT WP W W 10 20 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		GROUND SURFACE		76.4							
		CLAY, silty, some sand, trace gravel, some organics, very stiff to firm, brown, moist Note:SS1 was frozen: (FILL)		0.0	1	SS	31		0		Bentonite
1	gers	SAND, some silt, trace clay, very loose to loose, brown, moist		75.3 1.1	2	SS	6		0		Filter Sand
2	Hollow Stem Augers				3	ss	3	Grain Size Analysis: Gr 0%/ Sa 81%/Si 13%/ Cl 6%	0		▼
	Ĭ	CLAY, silty, trace sand, stiff, brown, moist		73.8 2.6	4	SS	6				Slotted Screen
3					5	ss	5				
4		END OF BOREHOLE AT 3.66m. Monitoring Wells installation consists of 50mm diameter Schedule 40 PVC pipe with a 1.54m slotted screen.		72.7 3.7							
5		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Feb 26-21 2.20 74.19 Mar 03-21 2.09 74.30 Apr 14-21 2.10 74.29									
6				V							
7											
8											
9											
		GROUNDWATER ELE'				Ţ		VATER LEVEL IN WELL/PIEZON pril 14, 2021	ETER LOGGED : RB		

Napanee Water Pollution Control Plant Expansion PROJECT

LOCATION N 4 900 302.0 E 343 528.0

STARTED February 25, 2021 February 25, 2021

Project No. 30726

SHEET 1 OF 1 DATUM Geodetic

CC)MPL	ETED : February 25, 2021									DATUM	Geodetic
Щ	阜	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR nat V	STRENGTH: Cu, KPa -	<u> </u> _ <u>©</u>	
DEPTH SCALE (metres)	BORING METHOD		STRATA PLOT	E. E	쑮		BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	20	40 60 80	ADDITIONAL LAB. TESTING	PIEZOMETEF OR
Ë E	SING	DESCRIPTION	ATA F	ELEV. DEPTH	NUMBER	TYPE	MS/(RESISTANCE PLOT		CONTENT, PERCENT	DDIT 8. TE	STANDPIPE INSTALLATIO
ĭ	BOR		STR/	(m)	ž	ĺ.	BLO	20 40 60 80 100	wp 10	20 30 40	4 5	
	П	GROUND SURFACE	XXX	76.4 0.0				- ' '				
		CLAY, silty, trace sand, trace gravel, trace organics, very stiff, brown, moist: (FILL)		0.0	1	SS	16					
		(1122)			'	33	10					
		SAND come silt trace aloy trace gravel	\bowtie	75.6 0.8								
1		SAND, some silt, trace clay, trace gravel, compact to loose, brown, moist; with layers of find sand/silt (~25mm thick)			2	SS	16	Grain Size Analysis: Gr 4%/ Sa 75%/Si 15%/ Cl 6%				
]								
	rgers											
	Solid Stem Augers				3	SS	8		o			
2	lid St											
	S	CLAY, silty, trace sand, stiff, moist, grey	W.	74.1 2.3	├							
		,,,,,,,,			4	ss	7			0		
•										,		
3					\vdash							
					5	ss	6			0		$\overline{\Sigma}$
	\vdash	END OF BOREHOLE AT 3.66m.	X X	72.7 3.7	+							-
4		END OF BOREHOLE AT 3.66m. BOREHOLE OPEN AND WATER LEVEL AT 3.50m UPON COMPLETION. BOREHOLE BACKFILLED WITH										
		HOLEPLUG.			L							
							4					
5						K						
					ħ							
_												
6												
7												
8												
0												
9												
		000111011111111111111111111111111111111	/^-	107:0	_							
		GROUNDWATER ELE\ ▽				•	,					
		$\overline{igspace}$ water level upon con	/IPLE	ETION		7	<u>-</u> ∨	/ATER LEVEL IN WELL/PIEZON	METER	LOGGED : RB		
										CHECKED : JD/	A/MTB	THUR

Napanee Water Pollution Control Plant Expansion PROJECT

N 4 900 388.5 E 343 400.4 LOCATION

STARTED March 2, 2021 SHEET 1 OF 1 March 2, 2021 DATUM Geodetic COMPLETED

Е	ОО	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR S nat V	STRENGTH: Cu, K - • Q - I - • Cpen	Pa	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	20 	40 60 8 CONTENT, PERCE	TY OB	PIEZOMETER OR STANDPIPE INSTALLATION
	П	GROUND SURFACE	T -	81.8								
		SAND, silty, trace gravel, trace clay, very dense, brown, frozen: (FILL) CLAY, silty, trace sand, trace gravel, trace oxidation/rust, stiff, brown, moist:		81.1 0.6	1	ss	59		0			
1	g	(FILL)		80.3		ss	8				>> A	
2	Solid Stem Augers	CLAY, silty, trace sand, trace oxidation, very stiff, brown, moist		1.4	3	ss	10			0	>>•	
	S				4	ss	15			0	>>•	
3		END OF ROPEHOLF AT 3.66m		78.1 3.7	5	ss	9			o	>>•	
4		END OF BOREHOLE AT 3.66m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE.		0.7								
5												
6												
7												
8												
9												
		GROUNDWATER ELE	VAT	IONS			1	l			<u> </u>	
		¥ WATER LEVEL UPON COM				Ž	Z _V	VATER LEVEL IN WELL/PIEZOM	ETER		RB JDA/MTB	THUR

Napanee Water Pollution Control Plant Expansion PROJECT

N 4 900 385.9 E 343 445.9 LOCATION

STARTED March 1, 2021 March 1, 2021 COMPLETED :

Project No. 30726

SHEET 1 OF 1 DATUM Geodetic

щ	00	SOIL PROFILE			SA	MPL	.ES	СО	MMEI	NTS] SH	nat V -	TRENGT	H: Cu, I Q -	KPa X	ا ی ر	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CO RESIS	\geq	_		W A	O 4 ATER C	10 6 L ONTENT,	60 PERC	80 ENT wl	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATION
_	BC		STF	(m)	Ĺ		В	20 40	60	80 I	100	1	0 2	20 3	0	40		
	\vdash	GROUND SURFACE ASPHALT: (60mm)		80.4		1											$\vdash \vdash$	
		SAND, gravelly, trace silt, compact to loose, brown, moist (FILL)		0.1	1	SS	30					0						
1	s			78.9		ss	4					0						
2	Solid Stem Augers	CLAY, silty, sandy, trace gravel, stiff to hard, brown, moist		1.4	3	SS	4	Grain Size Analy Gr 2%/ Sa 25%	sis: /Si 48º	%/ CI 2	5%			0				
	Sol				4	ss	32									o		
3				70.7	5	ss	22		<	K				0				
4		END OF BOREHOLE AT 3.66m. BOREHOLE BACKFILLED WITH HOLEPLUG.	- <i>X/V</i>	76.7 3.7														
5																		
6																		
7																		
8																		
9																		
		GROUNDWATER ELE	VAT	IONS	_			•						1		1		
		✓ WATER LEVEL UPON CO				Ī	Z w	/ATER LEVEL	. IN V	VELL/	PIEZOM	IETER		LOGGE		RB JDA/MT	'B	THURI

Napanee Water Pollution Control Plant Expansion PROJECT

N 4 900 314.3 E 343 501.3 LOCATION

STARTED March 2, 2021 March 2, 2021 COMPLETED :

Project No. 30726

SHEET 1 OF 1 DATUM Geodetic

Ē	НОБ	SOIL PROFILE	٠.		SA	MPL	_	СО	MMEN	NTS		SI SI	nat \ rem \	3 IRE / - ⊕ / - ●	INGIA	: Cu, K Q - 3 Cpen 2	ra K	₹ Ş Ç	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CO RESIS	ONE PI TANCE	ENETR E PLOT — 80 I	ATION	W/ W	:0 L ATER	40	60 L FENT, I	PERCE	30 ENT	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIO
		GROUND SURFACE	XXX	77.5															
		CLAY, silty, trace to some sand, trace to some gravel, hard to very stiff, brown, moist: (FILL)		0.0		ss	36							0					
1	s			76.1	2	ss	15						0						
2	Solid Stem Augers	SAND, silty, trace to some clay, trace gravel, compact, brown, moist (FILL)		1.4	3	SS	14	Grain Size Analy Gr 5%/ Sa 63%	sis: /Si 22º	%/ CI 1	0%		0						
	oS	CLAY, silty, trace sand, very stiff, brown, moist		75.2 2.3		ss	17									0	>>	<u> </u>	
3					5	ss	14	Grain Size Analy Gr 0%/ Sa 6%/	sis: Si 549	6/ Cl 4	0%			+	0		 1		
4																			
5		END OF BOREHOLE AT 5.18m. BOREHOLE BACKFILLED WITH		72.4 5.2	1	ST		Grain Size Analy Gr 0%/ Sa 0%/	sis: Si 199	%/ CI 8	1%				-		72		
6		BOREHOLE BACKFILLED WITH BENTONITE.																	
7																			
8																			
9																			
	·	GROUNDWATER ELE				Ī	Z _V	/ATER LEVEL	. IN V	/ELL/	PIEZOM	IETER		LO	GGED	:	RB		

Napanee Water Pollution Control Plant Expansion **PROJECT**

LOCATION N 4 900 375.0 E 343 378.0

STARTED February 26, 2021 COMPLETED February 26, 2021 Project No. 30726

SHEET 1 OF 1

DATUM Geodetic SAMPLES SOIL PROFILE COMMENTS BORING METHOD DEPTH SCALE (metres) ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT BLOWS/0.3m DYNAMIC CONE PENETRATION RESISTANCE PLOT OR STANDPIPE NUMBER TYPE ELEV. WATER CONTENT, PERCENT DESCRIPTION INSTALLATION DEPTH (m) 40 60 20 100 30 20 80 10 40 GROUND SURFACE 80. **CLAY**, silty, trace sand, trace gravel, firm, brown, wet: (FILL) SS 6 0 79.3 0.7 **CLAY**, silty, trace sand, very stiff, brown, moist SS 19 0 SS 17 3 -2 Grain Size Analysis: Gr 0%/ Sa 8%/ Si 44%/ Cl 48% SS 18 0 END OF BOREHOLE AT 2.90m.
BOREHOLE OPEN TO 2.9m AND DRY
UPON COMPLETION.
BOREHOLE BACKFILLED WITH
BENTONITE. 3 5 -6 7 -8 9 **GROUNDWATER ELEVATIONS**

TEL-30726.GPJ 4-30-24

THURBER2S

 $\overline{\underline{\lor}}$ WATER LEVEL UPON COMPLETION

▼ WATER LEVEL IN WELL/PIEZOMETER

Napanee Water Pollution Control Plant Expansion PROJECT

LOCATION N 4 900 395.1 E 343 423.1

STARTED March 2, 2021 SHEET 1 OF 1 March 2, 2021 DATUM Geodetic COMPLETED :

		SOIL PROFILE			SA	MPL	.ES	CC	OMMEN	NTS		S	HEAR	STREI ' - • ' - •	NGTH	: Cu, k		1 1	Geodetic
DEPTH SCALE (metres)	BORING METHOD		F	1			_						rem \ 20	7 - 4 0	60	Cpen	30	ADDITIONAL LAB. TESTING	PIEZOMETEI
H Sí etres	3 ME		STRATA PLOT	ELEV.	NUMBER	ш	BLOWS/0.3m	DYNAMIC C RESIS	ONE PE	ENETRA E PLOT	ATION								OR STANDPIPE
급트	ZINC SINC	DESCRIPTION	ATA	DEPTH	ĺ₩	TYPE)WS	-	\geq	_			A I E R /p	CONTI	=N1, I	PERCI		AB.	INSTALLATIO
-	BO		STR	(m)	l z		BLC	20 40	60	80	100		10	20	30		10	^ _	
\dashv		GROUND SURFACE	+"	80.5	T														
		ASPHALT: (60mm)	/ XXX	0.1	1														
		GRAVEL, sandy: (FILL) SILT, sandy, some clay, trace gravel.	⅓‱	0.2	1	SS	21							d					
		SILT, sandy, some clay, trace gravel, compact, brown, moist: (FILL)	/////	0.4															
		CLAY, silty, trace sand, very stiff, brown, moist		1															
1				1	2	SS	11)		♦	
				1															
	gers			1															
	l Au						4.0									_			
2	Ster				3	SS	12									0	>>	†	
_	Solid Stem Augers			1	\vdash														
	ا ره				\vdash														
					4	ss	18				▼)	>>	. ↓	
				77.6															
3		END OF BOREHOLE AT 2.90m.	TIZE.	2.9															
		BOREHOLE BACKFILLED WITH BENTONITE TO 0.2m AND THEN ASPHALT PATCH TO SURFACE.																	
		ASCITALI FATOR TO SURFACE.								K									
										_ `									
4																			
								V		-									
_																			
5						K		-											
6			1																
7																			
8																			
~																			
9																			
!		GROUNDWATER ELE	VΑΤ	IONS	_												1	1	A CONTRACTOR OF THE CONTRACTOR
						•	7												
		$\overline{igspace}$ water level upon co	MPLE	IION			- W	ATER LEVE	L IN W	vell/l	-IEZON	FIER			GED		RB		
														CHE	CKE	D :	JDA/M	TB	THUR

Napanee Water Pollution Control Plant Expansion PROJECT

N 4 900 334.8 E 343 465.3 LOCATION

STARTED March 2, 2021 SHEET 1 OF 1 March 2, 2021 DATUM Geodetic COMPLETED :

Щ	H 단	SOIL PROFILE	1.	1	SA	MPL		COMI	MENTS		J 3F	nat V - rem V -	TRENGT	Q - S Cpen	X	무일	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CON RESISTA 20 40	E PENETF NCE PLO - - 60 80	RATION T	W.A	O 4 ATER C	10 6 L ONTENT	SO 8	80 ENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		GROUND SURFACE		77.7	·												
		SILT, sandy, some clay, trace gravel, compact, brown, moist: (FILL)		77.0	1	SS	14										<u>∑</u>
1		CLAY, silty, sandy, trace gravel, trace organics, firm, brown, moist: (FILL)		0.7	2	SS	6	Grain Size Analysis Gr 3%/ Sa 22%/Si	: 49%/ CI 2	26%			0				
	igers	PEAT, soft, black, wet	 	76.3 1.4													
2	Solid Stem Augers				3	ss	3								3170)	
	So	CLAY, silty, some organics, firm, grey,		75.4 2.3													
3		wet			4	ss	2								910	Þ	
Ü				74.1	1	ST		Grain Size Analysis Gr 0%/ Sa 5%/ Si	: 47%/ Cl4	18%		F		<u> </u>			
4		END OF BOREHOLE AT 3.66m. BOREHOLE OPEN AND WATER LEVEL AT 0.66m UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE TO SURFACE.		3.7													
5																	
6				V													
7																	
8																	
9																	
		GROUNDWATER ELE	VAT	IONS	-			<u> </u>					1		1		
		WATER LEVEL UPON COI				Ī	Z v	/ATER LEVEL II	N WELL	/PIEZOM	IETER		LOGGE		RB JDA/MT	В	THUR

Napanee Water Pollution Control Plant Expansion PROJECT

LOCATION N 4 900 302.4 E 343 359.7

STARTED February 26, 2021 COMPLETED : February 26, 2021

Project No. 30726

SHEET 1 OF 1 DATUM Geodetic

- ((JIVIPLE	ETED : February 26, 2021								DATUM	Geodetic
щ	ОО	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - Q - Q - rem V - Cpen	١٥	
metres)	BORING METHOD	DESCRIPTION GROUND SURFACE	STRATA PLOT	_	z	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	rem V -	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	\vdash	SILT, clayey, some sand, trace to some gravel, firm, black/brown/red, moist: (FILL)	***	77.5 0.0	\vdash	1					
		gravel, firm, black/brown/red, moist: (FILL)			1	SS	19		0		
1	ers	CLAY, silty, trace sand, stiff to very stiff,		76.1 1.4		ss	8		0		
2	Solid Stem Augers	brown, moist				ss	9		c		
3		END OF BOREHOLE AT 2.90m.		74.7 2.9	4	ss	19		0		
•		END OF BOREHOLE AT 2.90m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE.						X			
4											
5											
6											
7											
8											
9											
		GROUNDWATER ELE	VA1	TIONS			<u> </u>				
		∑ WATER LEVEL UPON COM				Ţ	Z w	/ATER LEVEL IN WELL/PIEZOM		/MTB	THURI

RECORD OF BOREHOLE BH-24

Napanee Water Pollution Control Plant Expansion PROJECT

N 4 900 283.0 E 343 428.0 LOCATION

STARTED February 25, 2021 February 25, 2021 COMPLETED :

Project No. 30726

SHEET 1 OF 1 DATUM Geodetic

ا پ	무	SOIL PROFILE	1.		SA	MPL		COMMENTS		nat V - rem V -	RENGTH: Cu Q Cpe	X n. ∆	υ -
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT		20 4 WATER CO	0 60 L L ONTENT, PER	80 CENT WOLLDDA	O PIEZOMETER OR STANDPIPE INSTALLATION
	<u>ā</u>	GROUND SURFACE	ST	<u> </u>			B	20 40 60 80 10	JU L	10 2	0 30	40	
		ORGANICS, CLAY, silty, soft, brown, moist		75.9 0.0									
					1	SS	4				0		
	Augers	CLAY, silty, trace sand, very stiff, brown, moist		75.3 0.7									
1	Solid Stem Augers				2	SS	16					° †	
	Soli												
2					3	SS	13	Grain Size Analysis: Gr 0%/ Sa 6%/ Si 68%/ Cl 26%			0	>>	
					4	SS	21					58 0 >>	
3		END OF BOREHOLE AT 2.90m. BOREHOLE OPEN AND DRY UPON	18282	73.0 2.9	\vdash								
		END OF BOREHOLE AT 2.90m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE.											
4													
5													
5						K							
					h								
6													
7													
8													
-													
9													
		GROUNDWATER ELEV				-				<u> </u>	1 1	1	
		$^{ u}$ water level upon con	/IPLE	ETION		7	V N	/ATER LEVEL IN WELL/PIE	ZOM		LOGGED :	RB JDA/MTB	

RECORD OF BOREHOLE BH-25

Napanee Water Pollution Control Plant Expansion PROJECT

LOCATION N 4 900 364.7 E 343 500.3

STARTED March 1, 2021 SHEET 1 OF 1 March 1, 2021 DATUM Geodetic COMPLETED :

쁘	HOD	SOIL PROFILE			SA	MPL		COMMENTS	SH r	⊨ARS nat V - em V -	TRENG	IH: Cu, Q - Cper	KPa X 1▲	وَٰــٰـــ <u>ا</u>	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	WA	TER C	IO L ONTEN	60 L	80 	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIO
		GROUND SURFACE		77.7 0.0											
		ASPHALT: (150mm) GRAVEL and SAND, trace silt, compact to loose, brown to grey, wet: (FiLL)		0.0	1	ss	19		0						
1					2	ss	16		0						Ā
2					3	ss	8	Grain Size Analysis: Gr 51%/Sa 42%/ Si & Cl 7%		0					
		CLAY, silty, trace sand, firm to stiff, brown, moist		75.4 2.3	4	ss	12					0			
3	Solid Stem Augers				5	ss	6			•	C				
4	S														
5		Becoming grey			6	ss	7						0		
6															
J					7	ss	10	Grain Size Analysis: Gr 2%/ Sa 9%/ Si 12%/ Cl 77%			F		0 71	-	
7															
8		END OF BOREHOLE AT 8.23m.		69.5 8.2		ss	7				0				
9		END OF BOREHOLE AT 0.2311. BOREHOLE OPEN AND WATER LEVEL AT 1.1m UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE TO 0.3m THEN ASPHALT PATCH TO SURFACE.		0.2											
		GROUNDWATER ELE													_
		∑ WATER LEVEL UPON COI	MPLE	EHON		-1	- V	/ATER LEVEL IN WELL/PIEZON	IL I EK		LOGGE		RB JDA/M1	ГВ	THUR

Project No. 30726

RECORD OF BOREHOLE BH-26

Napanee Water Pollution Control Plant Expansion PROJECT

LOCATION N 4 900 345.9 E 343 514.1

March 1, 2021 STARTED COMPLETED : March 1, 2021 Project No. 30726

SHEET 1 OF 1 DATUM Geodetic

ا بِ	QOH.	}	SOIL PROFILE	1.		SA	MPL	_	COMMENTS	nat ' rem '	R STRENGTH: Cu, KP V - ♦ Q - 🗙 V - ♦ Cpen 🛦	" ₋ 9	DIF
DEPTH SCALE (metres)	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	20 	40 60 80 	T DITION	PIEZOMETER OR STANDPIPE INSTALLATION
			GROUND SURFACE	1	77.4								
		ı	ASPHALT: (60mm) SAND and GRAVEL, trace silt, very dense to compact, brown, moist: (FILL)		0.1	1	ss	56		0			
1					75.9	2	ss	10			0		
2			SILT, clayey, some sand, trace gravel, very stiff, brown, moist (FILL)		1.4 75.2	3	SS	16	Grain Size Analysis: Gr 0%/ Sa 13%/Si 59%/ Cl 28%		0		
			CLAY, silty, trace gravel, trace sand, very stiff to firm, brown, moist		2.2	4	ss	13			0		
3	Solid Stem Augers					5	ss	8	X		0		
4	S												
5			Becoming grey			6	ss	10	Grain Size Analysis: Gr 0%/ Sa 2%/ Si 50%/ Cl 48%		-		
6													
						7	ss	7				0	
7													Σ
8			END OF BOREHOLE AT 8.2m.		69.2 8.2	8	ss	6			0		=
9			BOREHOLE OPEN AND WATER LEVEL AT 7.6m UPON COMPLETION. BOREHOLE BACKFILLED WITH HOLEPLUG TO 0.2m, THEN ASPHALT TO SURFACE.		0.2								
			GROUNDWATER ELE										
			$^{ abla}$ water level upon con	MPLE	ETION		7	<u>-</u> ∨	VATER LEVEL IN WELL/PIEZON	ETER	LOGGED : R	B DA/MTB	THUR

RECORD OF BOREHOLE BH24-301

PROJECT: Napnee WPCP Detailed Design

February 21, 2024

STARTED

5-1-24

DRAFT LOGS.GPJ

40745 NAPANEE WPCP

THURBER2S

LOCATION : 300 Water Street N 4 900 313.0 E 343 462.9

DRILLER: ConeTec

SHEET 1 OF 1

Project No. 40745

COMPLETED DATUM CGVD28 February 21, 2024 DRILL RIG: Gtech GT8 SOIL PROFILE SAMPLES COMMENTS DEPTH SCALE (metres) **BORING METHOD** ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT BLOWS/0.3m DYNAMIC CONE PENETRATION RESISTANCE PLOT OR STANDPIPE NUMBER TYPE ELEV. WATER CONTENT, PERCENT DESCRIPTION INSTALLATION →^w DEPTH (m) 60 40 40 100 60 20 80 20 80 GROUND SURFACE Note: Refer to Project No. 30726 Borehole No. BH-04 dated February 24, 2021 for upper stratigraphy -2 3 HW Casing Mud Rotary CLAY very stiff grey wet 5 Nilcon Vane Test by Conetec at 5.5 m peak torque achieved without shearing -6 ST - 7 Nilcon Vane Test by Conetec at 7.0 m 3 ST -8 68.7 Nilcon Vane Test by Conetec at 8.5 m peak torque achieved without shearing End of Borehole 8.5 9

GROUNDWATER ELEVATIONS

WATER LEVEL UPON COMPLETION

▼ WATER LEVEL IN WELL/PIEZOMETER

LOGGED : IK CHECKED : SD

RECORD OF BOREHOLE MW24-101

Napnee WPCP Detailed Design PROJECT

STARTED

300 Water Street N 4 900 343.9 E 343 412.5 LOCATION

February 20, 2024

Project No. 40745

SHEET 1 OF 2 DATUM CGVD28

٦	40D	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - X rem V - ♥ Cpen ▲	_ 0	
UEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	rem V -	ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIPE INSTALLATIO
		GROUND SURFACE		79.0							
		SILTY CLAY with gravel some to trace organics brown moist FILL		0.0	1	ss	10				
1				77.5	2	ss	4				$ar{\Sigma}$
2		SILTY CLAY very stiff brown to grey moist to wet moist		1.5		ss	17				<u>*</u>
					4	ss	8				
3	HW Casing	Notary			5	ss	13				
4	HW	D N			6	ss	13				Bentonite
5					7	SS	6				
6		- some silt/sand seams below 5.3 m			8	ss	6				
							_				
7		LIMESTONE BEDROCK		71.7 7.3				2		FI	
8	ring	slightly weathered to fresh strong to very strong thinly bedded flat to wavy folation fossiliferous fined grained matrix with occasional	d		1	RUN	1	TCR=95% SCR=89% RQD=89%		>10 2 2 1	
9	HQ Coring	vugs (Bobcageon Formation)			2	RUN	J	TCR=100% SCR=100% RQD=89%		2 2 0	Filter Sand Slotted Screen
-	+	End of Borehole		69.2 9.8						1	Sand :
		GROUNDWATER ELI	EVAT	TIONS	•						

RECORD OF BOREHOLE MW24-101

Napnee WPCP Detailed Design PROJECT

300 Water Street N 4 900 343.9 E 343 412.5 LOCATION

DRILLER: ConeTec

SHEET 2 OF 2 DATUM CGVD28

Project No. 40745

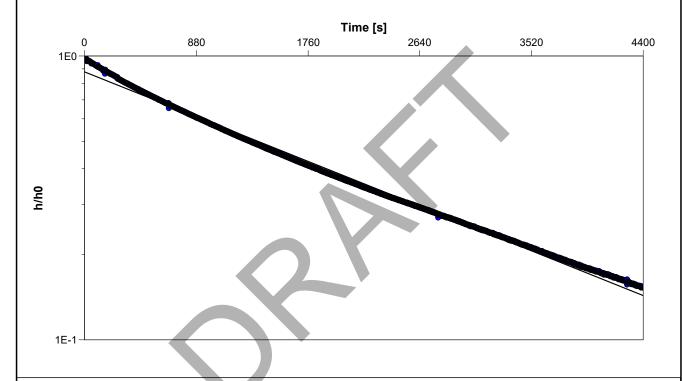
STARTED February 20, 2024 February 20, 2024 COMPLETED : DRILL RIG: Gtech GT8

щ	SOIL PROFILE SAN		MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - rem V - Cpen Cpen Cpen Cp				
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	20 40 60 80 Z F O S S S S S S S S S S S S S S S S S S	ZOMETER OR FANDPIPE TALLATION
- 11		Monitoring well 24-101 installed: Schedule 40 PVC standpipe of 50 mm diameter with 1.5 m screen length. Monument casing installed at ground surface. Well Readings: Date: Depth (m): Elev. (m): 2024/02/20 1.5 77.5 2024/02/21 1.8 77.2 2024/02/22 1.8 77.2								
-12 -12										-
- 13										
-14										
- 15										
-16										
- 17					\ \					
RAFT LOGS.GPJ 5-										-
40745 NAPANEE WPCP - DRAFT LOGS. GPJ - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -										
1HUKBEK2S 40/45		GROUNDWATER ELEV WATER LEVEL UPON CON February 20, 2024				Ī		WATER LEVEL IN WELL/PIEZOME February 21, 2024	ETER LOGGED : IK CHECKED : SD	THURBER

APPENDIX D SINGLE WELL RESPONSE TEST RESULTS

Slug	Test	Analys	sis F	Report
------	------	--------	-------	--------

Project: Napanee Water Pollution Control Plant


Number: 30726

Client: RV Anderson

Location: 300 Water St West	Slug Test: 02 Deep	Test Well: 02 Deep			
Test Conducted by: RB		Test Date: 2021-03-03			
Analysis Performed by: PC	02 Deep SWRT Analysis	Analysis Date: 2021-04-13			

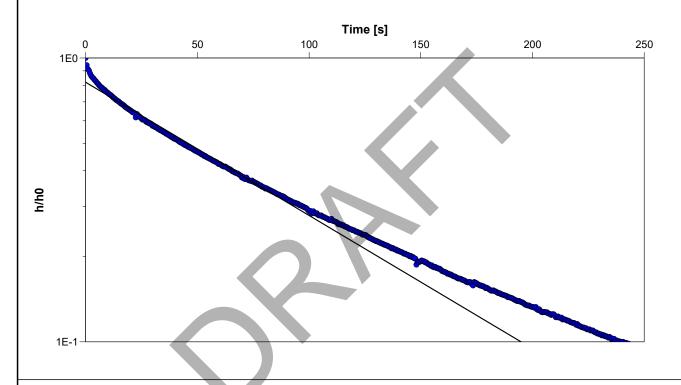
Aquifer Thickness:

Checked by: DH

Calculation	unina	Llyarday
Calculation	using	nvoisiev

Observation Well	Hydraulic Conductivity	
	[m/s]	
02 Deep	2.5 × 10 ⁻⁷	

Project: Napanee Water Pollution Control Plant


Number: 30726

Client: RV Anderson

Location: 300 Water St West	Slug Test: 02 Shallow	Test Well: 02 Shallow
Test Conducted by: RB		Test Date: 2021-03-03
Analysis Performed by: RB	02 Shallow SWRT Analysis	Analysis Date: 2021-03-09

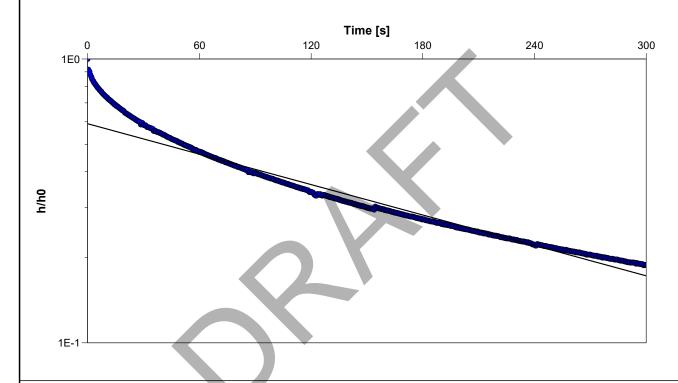
Aquifer Thickness:

Reviewed By: DH

Observation Well	Hydraulic Conductivity [m/s]	
02 Shallow	5.5 × 10 ⁻⁶	

Slug Test Analysis Report

Project: Napanee Water Pollution Control Plant


Number: 30726

Client: RV Anderson

	Location: 300 Water St West	Slug Test: 03 Deep	Test Well: 03 Deep	
Test Conducted by: RB Analysis Performed by: RB 03 Deep SWRT Analy			Test Date: 2021-03-03	
		03 Deep SWRT Analysis	Analysis Date: 2021-03-09	

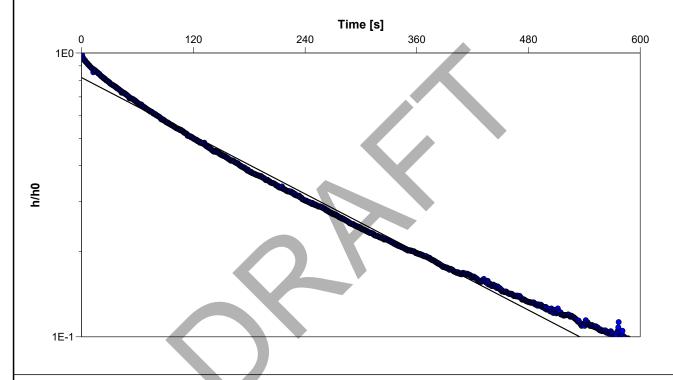
Aquifer Thickness:

Reviewed by: DH

Observation Well	Hydraulic Conductivity	
20.5	[m/s]	
03 Deep	2.5 × 10 ⁻⁶	

Slug Test Analysis Report

Project: Napanee Water Pollution Control Plant


Number: 30726

Client: RV Anderson

Location: 300 Water St West	Slug Test: 03 Shallow	Test Well: 03 Shallow
Test Conducted by: RB		Test Date: 2021-03-12
Analysis Performed by: PC	03 Shallow SWRT Analysis	Analysis Date: 2021-04-13

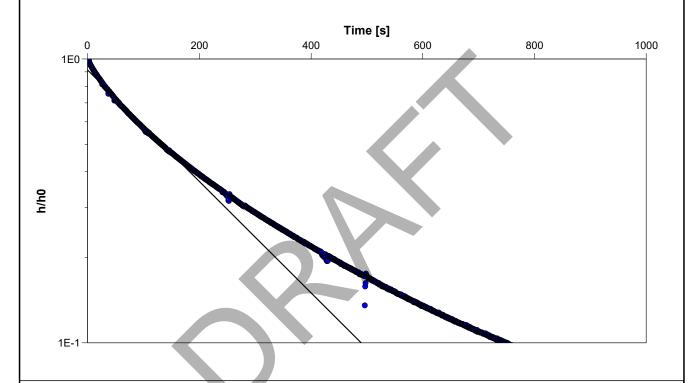
Aquifer Thickness:

Checked by: DH

Observation Well	Hydraulic Conductivity	
	[m/s]	
03 Shallow	2.0 × 10 ⁻⁶	

Slug	Test	Analys	is Re	port
------	------	--------	-------	------

Project: Napanee Water Pollution Control Plant


Number: 30726

Client: RV Anderson

Location: 300 Water St West	Slug Test: 04 Deep	Test Well: 04 Deep
Test Conducted by: RB		Test Date: 2021-03-03
Analysis Performed by: RB	04 Deep SWRT Analysis	Analysis Date: 2021-03-09
Analysis Performed by: RB	04 Deep SWRT Analysis	Analysis Date: 2021-03-0

Aquifer Thickness:

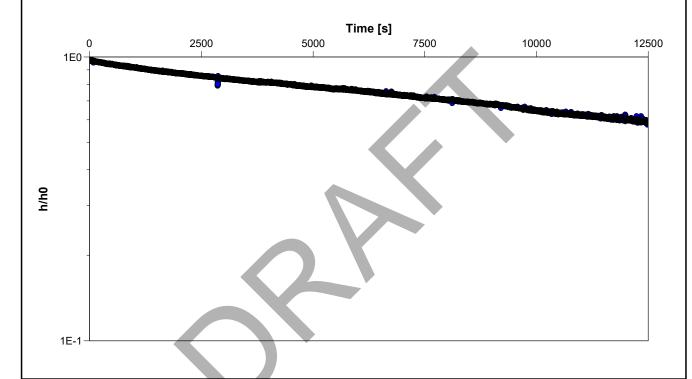
Reviewed By: DH

	Hvors	

Observation Well	Hydraulic Conductivity	
	[m/s]	
04 Deep	2.3 × 10 ⁻⁶	

Slug	Test	Analy	ysis	Repor	t
------	------	-------	------	-------	---

Project: Napanee Water Pollution Control Plant


Number: 30726

Client: RV Anderson

Location: 300 Water St West	Slug Test: 04 Shallow	Test Well: 04 Shallow
Test Conducted by: RB		Test Date: 2021-03-12
Analysis Performed by: PC	04 Shallow SWRT Analysis	Analysis Date: 2021-04-13

Aquifer Thickness:

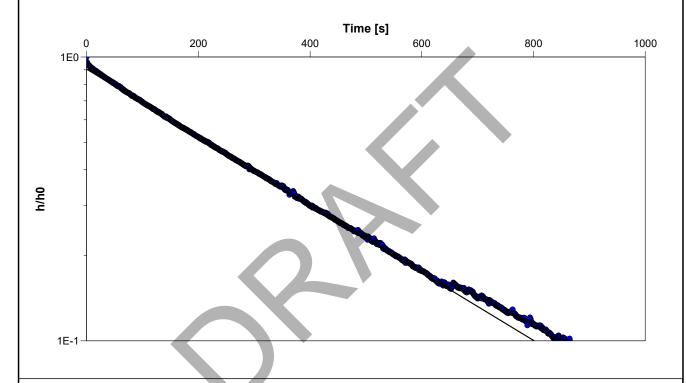
Checked by: DH

	Hvors	

Observation Well	Hydraulic Conductivity	
	[m/s]	
04 Shallow	1.9 × 10 ⁻⁸	

Slug Test Analysis Report

Project: Napanee Water Pollution Control Plant


Number: 30726

Client: RV Anderson

Location: 300 Water St West	Slug Test: 06	Test Well: 06		
Test Conducted by: RB		Test Date: 2021-03-12		
Analysis Performed by: PC	06 SWRT Analysis	Analysis Date: 2021-04-13		

Aquifer Thickness:

Checked by: DH

Calculation	unina	Llyarday
Calculation	using	nvoisiev

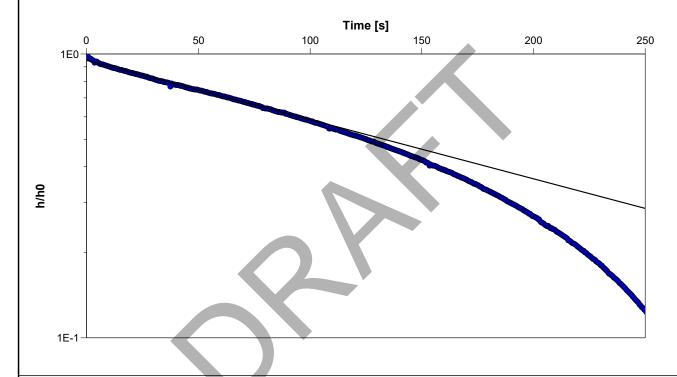
Observation Well	Hydraulic Conductivity	
	[m/s]	
06	1.4 × 10 ⁻⁶	

Slug	Test	Analys	sis F	Report
------	------	--------	-------	--------

Project: Napanee Water Pollution Control Plant

Number: 30726

Client: RV Anderson


Location: 300 Water St West Slug Test: 11 Test Well: 11

Test Conducted by: RB Test Date: 2021-03-03

Analysis Performed by: RB 11 SWRT Analysis Analysis Date: 2021-03-09

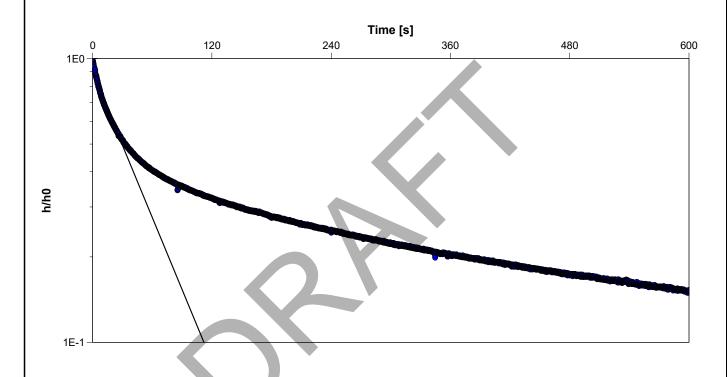
Aquifer Thickness:

Reviewed By: DH

Observation Well	Hydraulic Conductivity	
	[m/s]	
11	4.4 × 10 ⁻⁶	

Slug Test Analysis Report

Project: Napanee Water Pollution Control Plant


Number: 40745

Client: EVB Engineering

Location: 300 Water Steet West	Slug Test: MW24-101 Test 2	Test Well: MW24-101
Test Conducted by: IK		Test Date: 2024-02-22
Analysis Performed by: PC	MW24-101 Test 2 Analysis 1	Analysis Date: 2024-02-23
Aguifor Thickness:		

Aquifer Thickness:

Checked by: DH

Observation Well	Hydraulic Conductivity [m/s]	
MW24-101	1.7 × 10 ⁻⁵	

Slug Test Analysis Report

Project: Napanee Water Pollution Control Plant

Number: 40745

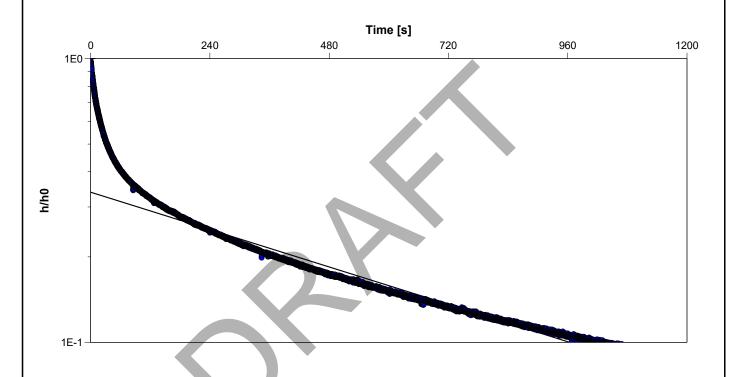
Client: EVB Engineering

Location: 300 Water Steet West

Slug Test: MW24-101 Test 2

Test Well: MW24-101

Test Date: 2024-02-22


Analysis Performed by: PC

MW24-101 Test 2 Analysis 2

Analysis Date: 2024-02-23

Aquifer Thickness:

Checked by: DH

Observation Well	Hydraulic Conductivity	
	[m/s]	
MW24-101	1.1 × 10 ⁻⁶	

APPENDIX E GROUNDWATER ANALYTICAL RESULTS AND CERTIFICATES OF ANALYSIS

	Screened		Napanee Sar	nitary Se	wer ¹		Napanee Sto	orm Sew	er ²			PWQC	3		In	terim PW	QO ⁴	
Well ID	Material	CoA	Exceeding Parameter	Units	Value	Limit	Exceeding Parameter	Units	Value	Limit	Exceeding Parameter	Units	Value	Limit	Exceeding Parameter	Units	Value	Limit
			No Exceedances				Manganese - Total	mg/L	0.0631	0.05	No Exceedances				Aluminum - Total	mg/L	0.0837	0.075
							Total Suspended Solids	mg/L	23.3	15					Cobalt - Total	mg/L	0.00103	0.0009
BH 04D	Cilturales:	1.0566055													Phosphorus - Total	mg/L	0.0111	0.01-0.03
BH 04D	Silty clay	L2566855													Phosphorus (P)- Total	mg/L	<0.050	0.01-0.03
															Cobalt - Dissolved	mg/L	0.00093	0.0009
															Phosphorus (P) - Dissolved	mg/L	<0.050	0.01 - 0.03
			No Exceedances				Manganese - Total	mg/L	0.554	0.05	Iron (total)	mg/L	26.4	0.3	Aluminum - Total	mg/L	21.0	0.075
							Phosphorus (P) - Total	mg/L	0.85	0.3	Nickel	mg/L	0.0287	0.025	Cobalt - Total	mg/L	0.0129	0.0009
							Total Suspended Solids	mg/L	140	15	Silver	mg/L	<0.00050	0.0001	Copper, Total	mg/L	0.0353	0.005
							Zinc - Total	mg/L	0.097	0.04	Zinc	mg/L	0.097	0.03	Lead, Total	mg/L	0.0247	0.005
BH 06	Silty clay	1.0566055													Phosphorus, Total	mg/L	0.148	0.01-0.03
BH 00	and silty sand	L2566855													Phosphorus (P), Total	mg/L	0.85	0.01-0.03
	Sand														Thallium	mg/L	0.00031	0.0003
															Vanadium	mg/L	0.0438	0.006
															Zinc (total)	mg/L	0.097	0.02
									·	·					Phosphorus (P) - Dissolved	mg/L	<0.050	0.01-0.03

General Notes:

Certificate of Analysis supersedes results presented here in case of any discrepancy.

Only parameters presented in Certificate of Analyses were analyzed. Criteria not assessed where noted.

Some parameter limits in the PWQO depend on the result of other parameters (e.g. Aluminum limits are dependent on pH values). An effort to adjust for these dependencies was made herein.

Specific: Italics indicate that the detection limit is higher than the regulagory limit

¹ Greater Napanee Sewer Use By-Law Table 1 - Limits for Discharges to Sanitary Sewers - By-law 2012-39

² Greater Napanee Sewer Use By-Law Table 2 - Limits for Discharges to Storm Sewers - By-law 2012-39

³ Table 2 - Provincial Water Quality Objectives

⁴ Table 2 - Interim Provincial Water Quality Objectives

Thurber Engineering Ltd. (Oakville)

ATTN: Rachel Bourassa 2010 Winston Park Drive

Unit 103

Oakville ON L6H 5R7

Date Received: 15-MAR-21

Report Date: 15-APR-21 12:05 (MT)

Version: FINAL REV. 5

Client Phone: 905-829-8666

Certificate of Analysis

Lab Work Order #: L2566855

Project P.O. #: NOT SUBMITTED

Job Reference: 30726

C of C Numbers: Legal Site Desc:

Comments: ADDITIONAL 23-MAR-21 08:39

Amanda Overholster Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🦣

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

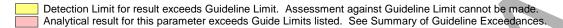
L2566855 CONT'D....
Job Reference: 30726
PAGE 2 of 15
15-APR-21 12:05 (MT)

Summary of Guideline Exceedances

uideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit
ntario Prov	vincial Water Quality O	bjectives (JULY, 1994) - Surface W	ater PWQO			
2566855-1	BH06	Anions and Nutrients	Phosphorus, Total	0.148	0.01	mg/L
		Total Metals	Aluminum (AI)-Total	21.0	0.015	mg/L
			Cadmium (Cd)-Total	0.000148	0.0001	mg/L
			Cobalt (Co)-Total	0.0129	0.0009	mg/L
			Copper (Cu)-Total	0.0353	0.001	mg/L
			Iron (Fe)-Total	26.4	0.3	mg/L
			Lead (Pb)-Total	0.0247	0.001	mg/L
			Nickel (Ni)-Total	0.0287	0.025	mg/L
			Phosphorus (P)-Total	0.85	0.01	mg/L
			Silver (Ag)-Total	<0.00050	0.0001	mg/L
			Thallium (TI)-Total	0.00031	0.0003	mg/L
			Vanadium (V)-Total	0.0438	0.006	mg/L
			Zinc (Zn)-Total	0.097	0.02	mg/L
		Dissolved Metals	Phosphorus (P)-Dissolved	<0.050	0.01	mg/L
2566855-2	BH04D	Anions and Nutrients	Phosphorus, Total	0.0111	0.01	mg/L
		Total Metals	Aluminum (AI)-Total	0.0837	0.015	mg/L
			Cobalt (Co)-Total	0.00103	0.0009	mg/L
			Phosphorus (P)-Total	< 0.050	0.01	mg/L
		Dissolved Metals	Cobalt (Co)-Dissolved	0.00093	0.0009	mg/L
			Phosphorus (P)-Dissolved	<0.050	0.01	mg/L

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....


Job Reference: 30726

PAGE 3 of 15

15-APR-21 12:05 (MT)

Physical Tests - WATER

, o. o o o . o						
			L	ab ID	L2566855-1	L2566855-2
			Sample	Date	12-MAR-21	12-MAR-21
			Sam	ple ID	BH06	BH04D
Analyte		Unit	Guide I #1	Limits #2		
Colour, Apparent		CU	-	-	47.7 PEHR	<2.0 PEHR
Conductivity	ι	ımhos/cm	ı -	-	867	850
Hardness (as CaCO3)		mg/L	-	-	418	383
pH		pH units	6.5-8.5	-	7.60	7.91
Total Suspended Solids		mg/L	-	-	140 DLHC	23.3
Total Dissolved Solids		mg/L	-	-	506 DLDS	468 DLDS
Turbidity		NTU	-	-	201 PEHR	11.3 PEHR

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....

Job Reference: 30726

PAGE 4 of 15

15-APR-21 12:05 (MT)

Anions and Nutrients - WATER

		Lab ID Sample Date Sample ID		L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D
Analyte	Unit	Guide #1	Limits #2		
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	358	297
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	<2.0	<2.0
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	<2.0	<2.0
Alkalinity, Total (as CaCO3)	mg/L	-	-	358	297
Ammonia, Total (as N)	mg/L	-	-	0.022	0.050
Bromide (Br)	mg/L	-	-	<0.10	<0.10
Chloride (CI)	mg/L	-	-	59.2	71.8
Computed Conductivity	uS/cm	-	-	798	801
Conductivity % Difference	%	-	-	-8	-6
Fluoride (F)	mg/L	-	-	0.093	0.143
Hardness (as CaCO3)	mg/L	-	-	418	383
Ion Balance	%	-	-	121	120
Langelier Index		-	-	1	1
Nitrate and Nitrite as N	mg/L	-	-	0.98	0.444
Nitrate (as N)	mg/L	-	-	0.980	0.425
Nitrite (as N)	mg/L	-	-	<0.010	0.019
Saturation pH	рН	-	-	6.86	7.15
Orthophosphate-Dissolved (as P)	mg/L	-	-	0.0101	<0.0030
Phosphorus, Total	mg/L	0.01	-	0.148	0.0111
TDS (Calculated)	mg/L	-	-	493	480
Sulfate (SO4)	mg/L	-	-	28.8	56.0
Anion Sum	me/L	-	-	8.24	8.15
Cation Sum	me/L	-	-	9.98	9.81
Cation - Anion Balance	%	-	-	10	9

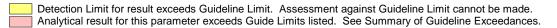
Guide Limit #1: Surface Water PWQO

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....


Job Reference: 30726

PAGE 5 of 15

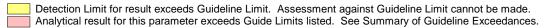
15-APR-21 12:05 (MT)

Organic / Inorganic Carbon - WATER

		L	_ab ID	L2566855-1	L2566855-2
		Sample	e Date	12-MAR-21	12-MAR-21
		Sam	ple ID	BH06	BH04D
Analyte	Unit	Guide #1	Limits #2		
Total Organic Carbon	mg/L	-	-	3.24	2.17

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....


Job Reference: 30726

PAGE 6 of 15

15-APR-21 12:05 (MT)

Inorganic Parameters - WATER

			Lab ID	L2566855-1	L2566855-2
		Sample	e Date	12-MAR-21	12-MAR-21
			ple ID	BH06	BH04D
Analyte	Unit	Guide #1	Limits #2		

L2566855 CONT'D....

Job Reference: 30726

PAGE 7 of 15

15-APR-21 12:05 (MT)

Total Metals - WATER

		Sample	ab ID Date ple ID	L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D	
Analyte	Unit	Guide #1	Limits #2			
Aluminum (AI)-Total	mg/L	0.015	-	21.0 DLHC	0.0837	
Antimony (Sb)-Total	mg/L	0.02	-	<0.0010 DLHC	0.00022	
Arsenic (As)-Total	mg/L	0.005	-	0.0039 ^{DLHC}	0.00117	
Barium (Ba)-Total	mg/L	-	-	0.596 DLHC	0.214	
Beryllium (Be)-Total	mg/L	0.011	-	<0.0010 PLHC	<0.00010	
Bismuth (Bi)-Total	mg/L	-	-	<0.00050	<0.000050	
Boron (B)-Total	mg/L	0.2	-	<0.10 DLHC	0.040	
Cadmium (Cd)-Total	mg/L	0.0001	-	0.000148 ^{DLHC}	<0.0000050	
Calcium (Ca)-Total	mg/L	-	-	183 DLHC	70.1	
Cesium (Cs)-Total	mg/L	-	-	0.00154 plhc	0.000013	
Chromium (Cr)-Total	mg/L	-	-	0.0316 ^{DLHC}	<0.00050	
Cobalt (Co)-Total	mg/L	0.0009	-	0.0129 ^{DLHC}	0.00103	
Copper (Cu)-Total	mg/L	0.001	-	0.0353 ^{DLHC}	<0.00050	
Iron (Fe)-Total	mg/L	0.3	-	26.4 DLHC	0.086	
Lead (Pb)-Total	mg/L	0.001	-	0.0247 ^{DLHC}	0.000082	
Lithium (Li)-Total	mg/L	-	-	0.022 DLHC	0.0075	
Magnesium (Mg)-Total	mg/L	-	-	49.0 DLHC	45.0	
Manganese (Mn)-Total	mg/L	-	-	0.554 DLHC	0.0631	
Mercury (Hg)-Total	mg/L	0.0002	-	0.0000065	<0.0000050	
Molybdenum (Mo)-Total	mg/L	0.04	-	0.00056 ^{DLHC}	0.00316	
Nickel (Ni)-Total	mg/L	0.025	-	0.0287 ^{DLHC}	0.00173	
Phosphorus (P)-Total	mg/L	0.01	-	0.85 DLHC	< 0.050	
Potassium (K)-Total	mg/L	-	-	8.15 DLHC	2.47	
Rubidium (Rb)-Total	mg/L	-	-	0.0373 ^{DLHC}	0.00172	
Selenium (Se)-Total	mg/L	0.1	-	<0.00050 DLHC	0.000258	
Silicon (Si)-Total	mg/L	-	-	46.6 DLHC	11.0	
Silver (Ag)-Total	mg/L	0.0001	-	<0.00050	<0.000050	
Sodium (Na)-Total	mg/L	-	-	36.3 DLHC	45.5	
Strontium (Sr)-Total	mg/L	-	-	0.496 DLHC	0.969	
Sulfur (S)-Total	mg/L	-	-	10.4 DLHC	22.1	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....

Job Reference: 30726

PAGE 8 of 15

15-APR-21 12:05 (MT)

Total Metals - WATER

TOTAL MICIAIS - WATER					
		L	ab ID	L2566855-1	L2566855-2
		Sample	Date	12-MAR-21	12-MAR-21
		Sample ID		BH06	BH04D
Analyte	Unit	Guide #1	Limits #2		
Tellurium (Te)-Total	mg/L	-	-	<0.0020 ^{DLHC}	<0.00020
Thallium (TI)-Total	mg/L	0.0003	-	0.00031 PLHC	0.000016
Thorium (Th)-Total	mg/L	-	-	0.0053 ^{DLHC}	<0.00010
Tin (Sn)-Total	mg/L	-	-	0.0011 ^{DLHC}	0.00198
Titanium (Ti)-Total	mg/L	-	-	1.26 DLHC	0.00445
Tungsten (W)-Total	mg/L	0.03	-	<0.0010 DLHC	<0.00010
Uranium (U)-Total	mg/L	0.005	-	0.00123 ^{DLHC}	0.00221
Vanadium (V)-Total	mg/L	0.006	-	0.0438 ^{DLHC}	0.00136
Zinc (Zn)-Total	mg/L	0.02	-	0.097 DLHC	<0.0030
Zirconium (Zr)-Total	mg/L	0.004	-	<0.0020 DLHC	<0.00020

Guide Limit #1: Surface Water PWQO

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D.... Job Reference: 30726 PAGE 9 of 15 15-APR-21 12:05 (MT)

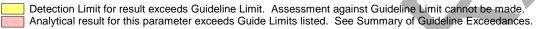
Dissolved Metals - WATER

Dissolved Metals - WATER		Sample	ab ID Date ple ID	L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D
Analyte	Unit	Guide #1	Limits #2		
Dissolved Mercury Filtration Location		-	-	LAB	FIELD
Dissolved Metals Filtration Location		-	-	LAB	LAB
Aluminum (Al)-Dissolved	mg/L	0.015	-	<0.0050	<0.0050
Antimony (Sb)-Dissolved	mg/L	0.02	-	0.00020	0.00020
Arsenic (As)-Dissolved	mg/L	0.005	-	0.00032	0.00142
Barium (Ba)-Dissolved	mg/L	-	-	0.210	0.221
Beryllium (Be)-Dissolved	mg/L	0.011	-	<0.00010	<0.00010
Bismuth (Bi)-Dissolved	mg/L	-	-	<0.000050	<0.000050
Boron (B)-Dissolved	mg/L	0.2	-	0.026	0.045
Cadmium (Cd)-Dissolved	mg/L	0.0001	-	0.0000572	<0.000050
Calcium (Ca)-Dissolved	mg/L	-	-	117	72.3
Cesium (Cs)-Dissolved	mg/L	-	-	<0.000010	<0.000010
Chromium (Cr)-Dissolved	mg/L	-	-	<0.00050	<0.00050
Cobalt (Co)-Dissolved	mg/L	0.0009	-	0.00016	0.00093
Copper (Cu)-Dissolved	mg/L	0.001	-	0.00065	0.00040
Iron (Fe)-Dissolved	mg/L	0.3	-	<0.010	<0.010
Lead (Pb)-Dissolved	mg/L	0.001	-	0.000124	<0.000050
Lithium (Li)-Dissolved	mg/L	-	-	0.0046	0.0095
Magnesium (Mg)-Dissolved	mg/L	-	-	30.5	49.2
Manganese (Mn)-Dissolved	mg/L	-	-	0.0253	0.0588
Mercury (Hg)-Dissolved	mg/L	0.0002	-	<0.0000050	<0.000050
Molybdenum (Mo)-Dissolved	mg/L	0.04	-	0.00177 ^{DTC}	0.00331
Nickel (Ni)-Dissolved	mg/L	0.025	-	0.00133	0.00161
Phosphorus (P)-Dissolved	mg/L	0.01	-	< 0.050	< 0.050
Potassium (K)-Dissolved	mg/L	-	-	2.22	2.64
Rubidium (Rb)-Dissolved	mg/L	-	-	0.00074	0.00164
Selenium (Se)-Dissolved	mg/L	0.1	-	0.000551	0.000327
Silicon (Si)-Dissolved	mg/L	-	-	9.66	11.8
Silver (Ag)-Dissolved	mg/L	0.0001	-	<0.000050	<0.000050
Sodium (Na)-Dissolved	mg/L	-	-	35.9	47.9

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....

Job Reference: 30726


PAGE 10 of 15

15-APR-21 12:05 (MT)

Dissolved Metals - WATER

DISSOIVED WETAIS - WATER					
			ab ID	L2566855-1 12-MAR-21	L2566855-2
		Sample Date Sample ID			12-MAR-21
	Sample ID			BH06	BH04D
Analyte	Unit	Guide #1	Limits #2		
Strontium (Sr)-Dissolved	mg/L	-	-	0.347	0.990
Sulfur (S)-Dissolved	mg/L	-	-	10.8	21.3
Tellurium (Te)-Dissolved	mg/L	-	-	<0.00020	<0.00020
Thallium (TI)-Dissolved	mg/L	0.0003	-	<0.000010	0.000015
Thorium (Th)-Dissolved	mg/L	-	-	<0.00010	<0.00010
Tin (Sn)-Dissolved	mg/L	-	-	0.00203	0.00195
Titanium (Ti)-Dissolved	mg/L	-	-	<0.00030	<0.00030
Tungsten (W)-Dissolved	mg/L	0.03	-	<0.00010	<0.00010
Uranium (U)-Dissolved	mg/L	0.005	-	0.000789	0.00215
Vanadium (V)-Dissolved	mg/L	0.006	-	0.00156	0.00124
Zinc (Zn)-Dissolved	mg/L	0.02	-	0.0018	0.0014
Zirconium (Zr)-Dissolved	mg/L	0.004	-	<0.00020	<0.00020

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....
Job Reference: 30726
PAGE 11 of 15
15-APR-21 12:05 (MT)

Additional Comments for Sample Listed:

Samplenum	Matrix	Report Remarks	Sample Comments
L2566855-1	Water	Note: RRR: Detection limits adjusted due to low recovery in LCS.	

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DTC	Dissolved concentration exceeds total. Results were confirmed by re-analysis.
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
PEHR	Parameter Exceeded Recommended Holding Time On Receipt: Proceed With Analysis As Requested.
SRU	Sample Received Unpreserved. Results may be biased low for indicated parameter(s)
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

625-SAN-WT Water Ontario Sanitary Sewer SVOC Target SW-846 8270

Samples are extracted with solvent and then analyzed by GC/MS.

ALD+DIEL-CALC-WT Water Aldrin + Dieldrin Calculation CALCULATION

This calculation represents the sum of the aldrin and dieldrin analyzed for in a given sample.

List

ALK-SPEC-PCT-WT Water Automated Speciated Alkalinity APHA 2320B

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

BOD-C-WT Water BOD Carbonaceous APHA 5210 B (CBOD)

This analysis is carried out using procedures adapted from APHA Method 5210B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting and incubating a sample for a specified time period, and measuring the oxygen depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a glass fibre filter prior to dilution. Carbonaceous BOD (CBOD) is determined by adding a nitrification inhibitor to the diluted sample prior to incubation.

BR-IC-N-WT Water Bromide in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

CHLORDANE-T-CALC-WT Water Chlordane Total sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

CL-IC-N-WT Water Chloride by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CN-TOT-WT Water Cvanide, Total ISO 14403-2

Total cyanide is determined by the combination of UV digestion and distillation. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

L2566855 CONT'D.... Job Reference: 30726 PAGE 12 of 15 15-APR-21 12:05 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix **Test Description** Method Reference**

When using this method, high levels of thiocyanate in samples can cause false positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, ALS recommends analysis for thiocyanate to check for this potential interference

COD-T-WT

Water

Chemical Oxygen Demand

APHA 5220 D

This analysis is carried out using procedures adapted from APHA Method 5220 "Chemical Oxygen Demand (COD)". Chemical oxygen demand is determined using the closed reflux colourimetric

method.

COLOUR-APPARENT-WT Water

Colour

APHA 2120

Apparent Colour is measured spectrophotometrically by comparison to platinum-cobalt standards using the single wavelength method after sample decanting. Colour measurements can be highly pH dependent, and apply to the pH of the sample as received (at time of testing), without pH adjustment. Concurrent measurement of sample pH is recommended.

CR-CR6-IC-WT

Water

Chromium +6

EPA 7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total chromium and the chromium (VI) results.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1. 2011).

DDD-DDE-DDT-CALC-WT Water

DDD, DDE, DDT sums

CALCULATION

Calculation of Total DDD. Total DDE and Total DDT

EC-SCREEN-WT

Water

Conductivity Screen (Internal Use

APHA 2510

Only)

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

EC-WT

Water

Conductivity

APHA 2510 B

Water samples can be measured directly by immersing the conductivity cell into the sample.

EC-WW-MF-WT

Water

E. Coli

SM 9222D

A 100 mL volume of sample is filtered through a membrane, the membrane is placed on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h. Method ID: WT-TM-1200

ETL-N2N3-WT

Water

Calculate from NO2 + NO3

APHA 4110 B

ETL-SILICA-CALC-WT

Water

Calculate from SI-TOT-WT

EPA 200.8

F-IC-N-WT

Water

Fluoride in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

HARDNESS-CALC-WT

Water

Hardness

APHA 2340 B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-D-CVAA-WT

Water

Dissolved Mercury in Water by CVAAS EPA 1631E (mod)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

L2566855 CONT'D.... Job Reference: 30726 PAGE 13 of 15 15-APR-21 12:05 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

HG-T-CVAA-WT Water Total Mercury in Water by CVAAS EPA 1631E (mod)

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

IONBALANCE-OP03-WT Water Detailed Ion Balance Calculation APHA 1030E, 2330B, 2510A

MET-D-CCMS-WT Water Dissolved Metals in Water by CRC APHA 3030B/6020A (mod)

ICPMS

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-T-CCMS-WT Water Total Metals in Water by CRC ICPMS EPA 200.2/6020A (mod)

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

METHYLNAPS-CALC-WT Water PAH-Calculated Parameters SW846 8270

NH3-F-WT Water Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

NO2-IC-WT Water Nitrite in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-IC-WT Water Nitrate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NP,NPE-LCMS-WT Water Nonylphenols and Ethoxylates by J. Chrom A849 (1999) p.467-482

LC/MS-MS

Water samples are filtered and analyzed on LCMS/MS by direct injection.

OCP-ROUTINE-WT Water Pesticides, Organochlorine in Water SW846 8270

Samples are extracted using a solvent mixture and the resulting extracts are analyzed on GC/MSD

OGG-SPEC-CALC-WT Water Speciated Oil and Grease A/V Calc CALCULATION

Sample is extracted with hexane, sample speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then determined gravimetrically.

L2566855 CONT'D.... Job Reference: 30726 PAGE 14 of 15 15-APR-21 12:05 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix **Test Description** Method Reference**

OGG-SPEC-WT Water Speciated Oil and Grease-Gravimetric APHA 5520 B

The procedure involves an extraction of the entire water sample with hexane. Sample speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then

determined gravimetrically.

P-T-COL-WT Water APHA 4500-P PHOSPHORUS Total P in Water by Colour

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is deteremined colourimetrically after persulphate digestion of the sample.

PAH-511-WT Water PAH-O. Reg 153/04 (July 2011) SW846 3510/8270

Aqueous samples, fortified with surrogates, are extracted using liquid/liquid extraction technique. The sample extracts are concentrated and then analyzed using GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PAH-SUM-CALC-WT Water TOTAL PAH's CALCULATION

Total PAH represents the sum of all PAH analytes reported for a given sample. Note that regulatory agencies and criteria differ in their definitions of Total PAH in terms of the individual PAH analytes to be included.

PCB-WT Water Polychlorinated Biphenyls FPA 8082

PCBs are extracted from an aqueous sample at neutral pH with aliquots of dichloromethane using a modified separatory funnel technique. The extracts are analyzed by GC/MSD.

PH-WT Water APHA 4500 H-Electrode Ha

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for

samples under this regulation is 28 days

PHENOLS-4AAP-WT Water Phenol (4AAP) **EPA 9066**

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricvanide to form a red complex which is measured

colorimetrically.

Water PO4-DO-COL-WT Diss. Orthophosphate in Water by APHA 4500-P PHOSPHORUS

Colour

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field

filtered through a 0.45 micron membrane filter.

SO4-IC-N-WT Water Sulfate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

SOLIDS-TDS-WT Water **Total Dissolved Solids** APHA 2540C

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

SOLIDS-TSS-WT

Water Suspended solids APHA 2540 D-Gravimetric

L2566855 CONT'D.... Job Reference: 30726 PAGE 15 of 15 15-APR-21 12:05 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

A well-mixed sample is filtered through a weighed standard glass fibre filter and the residue retained is dried in an oven at 104–1°C for a minimum of four hours or until a constant weight is achieved.

TKN-F-WT

Water

TKN in Water by Fluorescence

J. ENVIRON. MONIT., 2005,7,37-42,RSC

Total Kjeldahl Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection

TOC-WT

Water

Total Organic Carbon

APHA 5310B

Sample is injected into a heated reaction chamber which is packed with an oxidative catalyst. The water is vaporized and the organic cabon is oxidized to carbon dioxide. The carbon dioxide is transported in a carrier gas and is measured by a non-dispersive infrared detector.

TURBIDITY-WT

Water

Turbidity

APHA 2130 B

Sample result is based on a comparison of the intensity of the light scattered by the sample under defined conditions with the intensity of light scattered by a standard reference suspension under the same conditions. Sample readings are obtained from a Nephelometer.

VOC-ROU-HS-WT

Water

Volatile Organic Compounds

SW846 8260

Aqueous samples are analyzed by headspace-GC/MS.

XYLENES-SUM-CALC-WT Water

Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code

Laboratory Location

WT

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Quality Control Report

Workorder: L2566855 Report Date: 15-APR-21 Page 1 of 17

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Contact: Rachel Bourassa

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-SPEC-PCT-WT	Water							
Batch R54017 WG3502803-4 DU Alkalinity, Total (as C	Р	WG3502803-3 214	215		mg/L	0.5	20	16-MAR-21
Alkalinity, Bicarbona	e (as CaCO3)	214	215		mg/L	0.5	20	16-MAR-21
Alkalinity, Carbonate	(as CaCO3)	<2.0	<2.0	RPD-NA	mg/L	N/A	20	16-MAR-21
Alkalinity, Hydroxide	(as CaCO3)	<2.0	<2.0	RPD-NA	mg/L	N/A	20	16-MAR-21
WG3502803-2 LC Alkalinity, Total (as C			98.7		%		85-115	16-MAR-21
WG3502803-1 ME			-2.0		m a/l		2	40.141.04
Alkalinity, Total (as C Alkalinity, Bicarbona			<2.0 <2.0		mg/L		2	16-MAR-21
Alkalinity, Carbonate			<2.0		mg/L mg/L		2	16-MAR-21 16-MAR-21
Alkalinity, Hydroxide			<2.0		mg/L		2	16-MAR-21
BR-IC-N-WT	Water		12.0				_	10-WAIX-21
Batch R54030 WG3503957-4 DU Bromide (Br)	00	WG3503957-3 <0.10	<0.10	RPD-NA	mg/L	N/A	20	17-MAR-21
WG3503957-2 LC Bromide (Br)	S		100.6		%		85-115	17-MAR-21
WG3503957-1 MB Bromide (Br)	1		<0.10		mg/L		0.1	17-MAR-21
WG3503957-5 MS Bromide (Br)		WG3503957-3	101.2		%		75-125	17-MAR-21
CL-IC-N-WT	Water	_						
Batch R54030	00							
WG3503957-4 DU Chloride (CI)	P	WG3503957-3 1.50	1.51		mg/L	0.3	20	17-MAR-21
WG3503957-2 LC Chloride (CI)	S		99.8		%		90-110	17-MAR-21
WG3503957-1 ME Chloride (CI)			<0.50		mg/L		0.5	17-MAR-21
WG3503957-5 MS Chloride (CI)		WG3503957-3	98.0		%		75-125	17-MAR-21
COLOUR-APPARENT-V	VT Water							
Batch R54014	83							
WG3502608-3 DU Colour, Apparent		L2566743-1 28.3	28.7		CU	1.6	20	15-MAR-21
WG3502608-2 LC	5							

Quality Control Report

Workorder: L2566855 Report Date: 15-APR-21

Page 2 of 17

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Contact: Rachel Bourassa

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
COLOUR-APPARENT-WT Batch R5401483 WG3502608-2 LCS	Water		101.8		%		05.445	45 MAD 61
Colour, Apparent WG3502608-1 MB Colour, Apparent			<2.0		CU CU		85-115 2	15-MAR-21 15-MAR-21
EC-WT	Water							
Batch R5401759 WG3502803-4 DUP Conductivity		WG3502803-3 613	608		umhos/cm	0.8	10	16-MAR-21
WG3502803-2 LCS Conductivity			99.7		%		90-110	16-MAR-21
WG3502803-1 MB Conductivity			<3.0	1	umhos/cm		3	16-MAR-21
F-IC-N-WT	Water							
Batch R5403000 WG3503957-4 DUP Fluoride (F)		WG3503957-3 0.075	0.075		mg/L	0.1	20	17-MAR-21
WG3503957-2 LCS Fluoride (F)			102.3		%		90-110	17-MAR-21
WG3503957-1 MB Fluoride (F)			<0.020	>	mg/L		0.02	17-MAR-21
WG3503957-5 MS Fluoride (F)		WG3503957-3	100.5		%		75-125	17-MAR-21
HG-D-CVAA-WT	Water							
Batch R5404178 WG3505160-4 DUP		WG3505160-3						
Mercury (Hg)-Dissolved		<0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	16-MAR-21
WG3505160-2 LCS Mercury (Hg)-Dissolved			103.0		%		80-120	16-MAR-21
WG3505160-1 MB Mercury (Hg)-Dissolved			<0.0000050		mg/L		0.000005	16-MAR-21
WG3505160-6 MS Mercury (Hg)-Dissolved		WG3505160-5	99.3		%		70-130	16-MAR-21
WG3505214-4 DUP Mercury (Hg)-Dissolved WG3505214-2 LCS		WG3505214-3 <0.0000050	<0.000050	RPD-NA	mg/L	N/A	20	22-MAR-21
Mercury (Hg)-Dissolved			94.2		%		80-120	22-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 3 of 17

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-D-CVAA-WT	Water							
Batch R5407708 WG3505214-1 MB Mercury (Hg)-Dissolved			<0.0000050		mg/L		0.000005	22-MAR-21
WG3505214-6 MS Mercury (Hg)-Dissolved		WG3505214-5	89.5		%		70-130	22-MAR-21
HG-T-CVAA-WT	Water							
Batch R5401807 WG3502836-4 DUP Mercury (Hg)-Total		WG3502836-3 <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	16-MAR-21
WG3502836-2 LCS Mercury (Hg)-Total			103.0		%		80-120	16-MAR-21
WG3502836-1 MB Mercury (Hg)-Total			<0.0000050		mg/L		0.000005	16-MAR-21
WG3502836-6 MS Mercury (Hg)-Total		WG3502836-5	99.3		%		70-130	16-MAR-21
Batch R5407711 WG3505207-3 DUP Mercury (Hg)-Total		L2568290-1 <0.000050	<0.0000050	RPD-NA	mg/L	N/A	20	22-MAR-21
WG3505207-2 LCS Mercury (Hg)-Total			100.0	•	%		80-120	22-MAR-21
WG3505207-1 MB Mercury (Hg)-Total			<0.0000050		mg/L		0.000005	22-MAR-21
WG3505207-4 MS Mercury (Hg)-Total		L2568425-1	100.3		%		70-130	22-MAR-21
MET-D-CCMS-WT	Water							
Batch R5403719 WG3504802-4 DUP		WG3504802-3						
Aluminum (Al)-Dissolved		<0.050	<0.050	RPD-NA	mg/L	N/A	20	18-MAR-21
Antimony (Sb)-Dissolved		0.0027	0.0031		mg/L	14	20	18-MAR-21
Arsenic (As)-Dissolved		0.0166	0.0183		mg/L	9.4	20	18-MAR-21
Barium (Ba)-Dissolved		0.108	0.119		mg/L	9.7	20	18-MAR-21
Beryllium (Be)-Dissolved		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	18-MAR-21
Bismuth (Bi)-Dissolved		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	18-MAR-21
Boron (B)-Dissolved	.1	0.35	0.40		mg/L	15	20	18-MAR-21
Cadmium (Cd)-Dissolved		0.000069	0.000079		mg/L	14	20	18-MAR-21
Calcium (Ca)-Dissolved		132	152		mg/L	14	20	18-MAR-21
Cesium (Cs)-Dissolved		0.00015	0.00019	J	mg/L	0.00004	0.0002	18-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 4 of 17

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-WT	Water							
Batch R54037	19							
WG3504802-4 DU Chromium (Cr)-Disso		WG3504802- <0.0050	3 <0.0050	RPD-NA	mg/L	N/A	20	18-MAR-21
Cobalt (Co)-Dissolve		0.0077	0.0084	IN D INA	mg/L	8.7	20	18-MAR-21
Copper (Cu)-Dissolve		0.0129	0.0142		mg/L	9.4	20	18-MAR-21
Iron (Fe)-Dissolved		<0.10	<0.10	RPD-NA	mg/L	N/A	20	18-MAR-21
Lead (Pb)-Dissolved		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	18-MAR-21
Lithium (Li)-Dissolved	d	0.336	0.379	111 2 107	mg/L	12	20	18-MAR-21
Magnesium (Mg)-Dis	solved	45.0	49.4		mg/L	9.2	20	18-MAR-21
Manganese (Mn)-Dis		0.0122	0.0135		mg/L	10	20	18-MAR-21
Molybdenum (Mo)-Di	issolved	0.0129	0.0146		mg/L	13	20	18-MAR-21
Nickel (Ni)-Dissolved		0.0184	0.0205		mg/L	11	20	18-MAR-21
Phosphorus (P)-Diss	olved	<0.50	<0.50	RPD-NA	mg/L	N/A	20	18-MAR-21
Potassium (K)-Disso	lved	36.0	39.9		mg/L	10	20	18-MAR-21
Rubidium (Rb)-Disso	lved	0.0245	0.0273		mg/L	11	20	18-MAR-21
Selenium (Se)-Disso	lved	0.0144	0.0163		mg/L	13	20	18-MAR-21
Silicon (Si)-Dissolved	i	0.80	0.89		mg/L	11	20	18-MAR-21
Silver (Ag)-Dissolved	l	<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	18-MAR-21
Sodium (Na)-Dissolv	ed	296	328		mg/L	10	20	18-MAR-21
Strontium (Sr)-Dissol	lved	1.85	2.12		mg/L	14	20	18-MAR-21
Sulfur (S)-Dissolved		160	179		mg/L	11	20	18-MAR-21
Tellurium (Te)-Dissol	lved	<0.0020	<0.0020	RPD-NA	mg/L	N/A	20	18-MAR-21
Thallium (TI)-Dissolv	ed	<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	18-MAR-21
Thorium (Th)-Dissolv	/ed	<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	18-MAR-21
Tin (Sn)-Dissolved		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	18-MAR-21
Titanium (Ti)-Dissolv	ed	<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	18-MAR-21
Tungsten (W)-Dissol	ved	0.0169	0.0192		mg/L	13	20	18-MAR-21
Uranium (U)-Dissolve	ed	0.00122	0.00134		mg/L	9.4	20	18-MAR-21
Vanadium (V)-Dissol	ved	<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	18-MAR-21
Zinc (Zn)-Dissolved		<0.010	<0.010	RPD-NA	mg/L	N/A	20	18-MAR-21
Zirconium (Zr)-Disso	lved	<0.0020	<0.0020	RPD-NA	mg/L	N/A	20	18-MAR-21
WG3504802-2 LC3 Aluminum (Al)-Disso			112.4		%		80-120	18-MAR-21
Antimony (Sb)-Disso			101.0		%		80-120	18-MAR-21
Arsenic (As)-Dissolve			107.0		%		80-120	18-MAR-21
` '								

Workorder: L2566855 Report Date: 15-APR-21 Page 5 of 17

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-WT	Water							
Batch R54037	19							
WG3504802-2 LC					0.4			
Barium (Ba)-Dissolve			106.7		%		80-120	18-MAR-21
Beryllium (Be)-Dissol			109.0		%		80-120	18-MAR-21
Bismuth (Bi)-Dissolve	ea		104.0		%		80-120	18-MAR-21
Boron (B)-Dissolved			104.2		%		80-120	18-MAR-21
Cadmium (Cd)-Disso			105.2		%		80-120	18-MAR-21
Calcium (Ca)-Dissolv			105.7		%		80-120	18-MAR-21
Cesium (Cs)-Dissolv			106.0		%		80-120	18-MAR-21
Chromium (Cr)-Disso			104.9	· ·	%		80-120	18-MAR-21
Cobalt (Co)-Dissolve	d		105.9		%		80-120	18-MAR-21
Copper (Cu)-Dissolve	ed		104.5		%		80-120	18-MAR-21
Iron (Fe)-Dissolved			106.2		%		80-120	18-MAR-21
Lead (Pb)-Dissolved			104.6		%		80-120	18-MAR-21
Lithium (Li)-Dissolved	d		115.2		%		80-120	18-MAR-21
Magnesium (Mg)-Dis	solved		112.0		%		80-120	18-MAR-21
Manganese (Mn)-Dis	solved		105.1		%		80-120	18-MAR-21
Molybdenum (Mo)-Di	issolved		105.2		%		80-120	18-MAR-21
Nickel (Ni)-Dissolved			104.6		%		80-120	18-MAR-21
Phosphorus (P)-Diss	olved		111.8		%		80-120	18-MAR-21
Potassium (K)-Disso	lved		108.9		%		80-120	18-MAR-21
Rubidium (Rb)-Disso	lved		110.0		%		80-120	18-MAR-21
Selenium (Se)-Disso	lved		101.4		%		80-120	18-MAR-21
Silicon (Si)-Dissolved	d		107.1		%		60-140	18-MAR-21
Silver (Ag)-Dissolved	I		107.7		%		80-120	18-MAR-21
Sodium (Na)-Dissolv	ed		110.0		%		80-120	18-MAR-21
Strontium (Sr)-Dissol	lved		106.0		%		80-120	18-MAR-21
Sulfur (S)-Dissolved			108.2		%		80-120	18-MAR-21
Tellurium (Te)-Dissol	lved		96.3		%		80-120	18-MAR-21
Thallium (TI)-Dissolv	ed		104.6		%		80-120	18-MAR-21
Thorium (Th)-Dissolv	ved		105.2		%		80-120	18-MAR-21
Tin (Sn)-Dissolved			104.5		%		80-120	18-MAR-21
Titanium (Ti)-Dissolv	ed		104.4		%		80-120	18-MAR-21
Tungsten (W)-Dissol	ved		101.8		%		80-120	18-MAR-21
Uranium (U)-Dissolve	ed		108.8		%		80-120	18-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 6 of 17

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-WT	Water							
Batch R54037	719							
WG3504802-2 LC Vanadium (V)-Disso			108.2		%		80-120	18-MAR-21
Zinc (Zn)-Dissolved			106.2		%		80-120	18-MAR-21
Zirconium (Zr)-Disso	olved		105.7		%		80-120	18-MAR-21
WG3504802-1 ME								
Aluminum (Al)-Disso			<0.0050		mg/L		0.005	18-MAR-21
Antimony (Sb)-Disso	olved		<0.00010		mg/L		0.0001	18-MAR-21
Arsenic (As)-Dissolv	red		<0.00010		mg/L		0.0001	18-MAR-21
Barium (Ba)-Dissolve	ed		<0.00010		mg/L		0.0001	19-MAR-21
Beryllium (Be)-Disso	olved		<0.00010		mg/L		0.0001	18-MAR-21
Bismuth (Bi)-Dissolv	red		<0.000050		mg/L		0.00005	18-MAR-21
Boron (B)-Dissolved			<0.010		mg/L		0.01	18-MAR-21
Cadmium (Cd)-Disso	olved		<0.000005	SC .	mg/L		0.000005	18-MAR-21
Calcium (Ca)-Dissol	ved		0.216	В	mg/L		0.05	18-MAR-21
Cesium (Cs)-Dissolv	/ed		<0.000010		mg/L		0.00001	18-MAR-21
Chromium (Cr)-Diss	olved		<0.00050		mg/L		0.0005	18-MAR-21
Cobalt (Co)-Dissolve	ed		<0.00010		mg/L		0.0001	18-MAR-21
Copper (Cu)-Dissolv	ved .		<0.00020		mg/L		0.0002	18-MAR-21
Iron (Fe)-Dissolved			<0.010		mg/L		0.01	18-MAR-21
Lead (Pb)-Dissolved	I		<0.000050)	mg/L		0.00005	18-MAR-21
Lithium (Li)-Dissolve	ed		<0.0010		mg/L		0.001	18-MAR-21
Magnesium (Mg)-Dis	ssolved		0.0537	В	mg/L		0.005	18-MAR-21
Manganese (Mn)-Dis	ssolved		<0.00050		mg/L		0.0005	18-MAR-21
Molybdenum (Mo)-D	issolved		<0.000050)	mg/L		0.00005	18-MAR-21
Nickel (Ni)-Dissolved	d		<0.00050		mg/L		0.0005	18-MAR-21
Phosphorus (P)-Diss	solved		< 0.050		mg/L		0.05	18-MAR-21
Potassium (K)-Disso	olved		< 0.050		mg/L		0.05	18-MAR-21
Rubidium (Rb)-Disso	olved		<0.00020		mg/L		0.0002	18-MAR-21
Selenium (Se)-Disso	olved		<0.000050)	mg/L		0.00005	18-MAR-21
Silicon (Si)-Dissolve	d		< 0.050		mg/L		0.05	18-MAR-21
Silver (Ag)-Dissolved	d		<0.000050	1	mg/L		0.00005	18-MAR-21
Sodium (Na)-Dissolv	/ed		0.065	В	mg/L		0.05	18-MAR-21
Strontium (Sr)-Disso			<0.0010		mg/L		0.001	18-MAR-21
Sulfur (S)-Dissolved			<0.50		mg/L		0.5	18-MAR-21
Tellurium (Te)-Disso			<0.00020		mg/L		0.0002	18-MAR-21
			10.00020		9, =		5.5552	10 IVIAILE

Workorder: L2566855 Report Date: 15-APR-21 Page 7 of 17

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-WT	Water							
Batch R5403719 WG3504802-1 MB			0.000040				0.00004	
Thallium (TI)-Dissolved			<0.000010		mg/L		0.00001	18-MAR-21
Thorium (Th)-Dissolved			<0.00010		mg/L		0.0001	18-MAR-21
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	18-MAR-21
Titanium (Ti)-Dissolved			<0.00030		mg/L		0.0003	18-MAR-21
Tungsten (W)-Dissolved			<0.00010		mg/L		0.0001	18-MAR-21
Uranium (U)-Dissolved			<0.000010)	mg/L		0.00001	18-MAR-21
Vanadium (V)-Dissolved			<0.00050		mg/L	•	0.0005	18-MAR-21
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	18-MAR-21
Zirconium (Zr)-Dissolved	1		<0.00020		mg/L		0.0002	18-MAR-21
WG3504802-5 MS Aluminum (Al)-Dissolved	i	WG3504802-6	102.3		%		70-130	18-MAR-21
Antimony (Sb)-Dissolved	d		94.5		%		70-130	18-MAR-21
Arsenic (As)-Dissolved			75.1		%		70-130	18-MAR-21
Barium (Ba)-Dissolved			N/A	MS-B	%		-	18-MAR-21
Beryllium (Be)-Dissolved	I		108.4		%		70-130	18-MAR-21
Bismuth (Bi)-Dissolved			99.1		%		70-130	18-MAR-21
Boron (B)-Dissolved			N/A	MS-B	%		-	18-MAR-21
Cadmium (Cd)-Dissolved	d		103.2		%		70-130	18-MAR-21
Calcium (Ca)-Dissolved			N/A	MS-B	%		=	18-MAR-21
Cesium (Cs)-Dissolved			95.5		%		70-130	18-MAR-21
Chromium (Cr)-Dissolve	d		105.3		%		70-130	18-MAR-21
Cobalt (Co)-Dissolved			73.7		%		70-130	18-MAR-21
Copper (Cu)-Dissolved			82.9		%		70-130	18-MAR-21
Iron (Fe)-Dissolved			90.3		%		70-130	18-MAR-21
Lead (Pb)-Dissolved			100.3		%		70-130	18-MAR-21
Lithium (Li)-Dissolved			N/A	MS-B	%		-	18-MAR-21
Magnesium (Mg)-Dissolv	ved		N/A	MS-B	%		-	18-MAR-21
Manganese (Mn)-Dissolv	ved		N/A	MS-B	%		-	18-MAR-21
Phosphorus (P)-Dissolve	ed		116.0		%		70-130	18-MAR-21
Potassium (K)-Dissolved	i		N/A	MS-B	%		-	18-MAR-21
Rubidium (Rb)-Dissolved	d		N/A	MS-B	%		-	18-MAR-21
Selenium (Se)-Dissolved	d		94.0		%		70-130	18-MAR-21
Silicon (Si)-Dissolved			N/A	MS-B	%		-	18-MAR-21
Silver (Ag)-Dissolved			103.3		%		70-130	18-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 8 of 17

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-WT	Water							
Batch R5403719								
WG3504802-5 MS		WG3504802-	-	MC D	%			40 MAD 04
Sodium (Na)-Dissolved Strontium (Sr)-Dissolve	d		N/A N/A	MS-B MS-B	%		-	18-MAR-21
Sulfur (S)-Dissolved	u		N/A N/A		%		-	18-MAR-21
` ,	d		95.9	MS-B	%		-	18-MAR-21
Tellurium (Te)-Dissolve Thallium (Tl)-Dissolved	u		100.2		%		70-130	18-MAR-21
Thorium (Th)-Dissolved	ı		100.2		%		70-130	18-MAR-21
Tin (Sn)-Dissolved	ı		103.4		%		70-130	18-MAR-21
			103.4		%	•	70-130	18-MAR-21
Titanium (Ti)-Dissolved			N/A	MC D			70-130	18-MAR-21
Tungsten (W)-Dissolved Uranium (U)-Dissolved	u		N/A N/A	MS-B	%		-	18-MAR-21
, ,	d		107.3	MS-B			-	18-MAR-21
Vanadium (V)-Dissolved Zinc (Zn)-Dissolved	u		84.0		%		70-130	18-MAR-21
Zirconium (Zr)-Dissolve	d		103.4		%		70-130	18-MAR-21
Zircoriium (Zi)-Dissoive	eu		103.4		70		70-130	18-MAR-21
MET-T-CCMS-WT	Water							
Batch R5401825		W0050000						
WG3502672-4 DUP Aluminum (Al)-Total		WG3502672- <0.050	3 <0.050	RPD-NA	mg/L	N/A	20	16-MAR-21
Antimony (Sb)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Arsenic (As)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Barium (Ba)-Total		2.07	2.07		mg/L	0.1	20	16-MAR-21
Beryllium (Be)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Bismuth (Bi)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-MAR-21
Boron (B)-Total		<0.10	<0.10	RPD-NA	mg/L	N/A	20	16-MAR-21
Cadmium (Cd)-Total		<0.000050	<0.000050		mg/L	N/A	20	16-MAR-21
Calcium (Ca)-Total		400	404	2	mg/L	1.0	20	16-MAR-21
Chromium (Cr)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	16-MAR-21
Cesium (Cs)-Total		<0.00010	<0.00010		mg/L	N/A	20	16-MAR-21
Cobalt (Co)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Copper (Cu)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	16-MAR-21
Iron (Fe)-Total		1.40	1.39	IN DINA	mg/L	0.5	20	16-MAR-21
Lead (Pb)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-MAR-21
Lithium (Li)-Total		0.014	0.014	KFD-NA	mg/L			
Magnesium (Mg)-Total					-	1.6	20	16-MAR-21
iviagnesium (ivig)-i otal		177	178		mg/L	0.9	20	16-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 9 of 17

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5401825								
WG3502672-4 DUP Manganese (Mn)-Total		WG3502672-3 0.157	0.157		mg/L	0.1	20	16-MAR-21
Molybdenum (Mo)-Total		0.00158	0.00157		mg/L	0.5	20	16-MAR-21
Nickel (Ni)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	16-MAR-21
Phosphorus (P)-Total		<0.50	<0.50	RPD-NA	mg/L	N/A	20	16-MAR-21
Potassium (K)-Total		8.35	8.35		mg/L	0.1	20	16-MAR-21
Rubidium (Rb)-Total		0.0044	0.0038		mg/L	14	20	16-MAR-21
Selenium (Se)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-MAR-21
Silicon (Si)-Total		11.9	12.0		mg/L	0.9	20	16-MAR-21
Silver (Ag)-Total		< 0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-MAR-21
Sodium (Na)-Total		847	856		mg/L	1.1	20	16-MAR-21
Strontium (Sr)-Total		3.93	4.04		mg/L	2.6	20	16-MAR-21
Sulfur (S)-Total		8.5	8.4		mg/L	1.4	20	16-MAR-21
Thallium (TI)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	16-MAR-21
Tellurium (Te)-Total		<0.0020	<0.0020	RPD-NA	mg/L	N/A	20	16-MAR-21
Thorium (Th)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Tin (Sn)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Titanium (Ti)-Total		<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	16-MAR-21
Tungsten (W)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Uranium (U)-Total		0.00030	0.00030		mg/L	1.2	20	16-MAR-21
Vanadium (V)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	16-MAR-21
Zinc (Zn)-Total		<0.030	<0.030	RPD-NA	mg/L	N/A	20	16-MAR-21
Zirconium (Zr)-Total		<0.0020	<0.0020	RPD-NA	mg/L	N/A	20	16-MAR-21
WG3502672-2 LCS								
Aluminum (Al)-Total			105.0		%		80-120	16-MAR-21
Antimony (Sb)-Total			105.1		%		80-120	16-MAR-21
Arsenic (As)-Total			102.0		%		80-120	16-MAR-21
Barium (Ba)-Total			106.0		%		80-120	16-MAR-21
Beryllium (Be)-Total			99.9		%		80-120	16-MAR-21
Bismuth (Bi)-Total			104.4		%		80-120	16-MAR-21
Boron (B)-Total			100.6		%		80-120	16-MAR-21
Cadmium (Cd)-Total			103.2		%		80-120	16-MAR-21
Calcium (Ca)-Total			102.1		%		80-120	16-MAR-21
Chromium (Cr)-Total			104.2		%		80-120	16-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 10 of 17

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5401825								
WG3502672-2 LCS Cesium (Cs)-Total			104.9		%		80-120	16-MAR-21
Cobalt (Co)-Total			103.4		%		80-120	16-MAR-21
Copper (Cu)-Total			100.5		%		80-120	16-MAR-21
Iron (Fe)-Total			104.4		%		80-120	16-MAR-21
Lead (Pb)-Total			104.9		%		80-120	16-MAR-21
Lithium (Li)-Total			101.4		%		80-120	16-MAR-21
Magnesium (Mg)-Total			108.2		%		80-120	16-MAR-21
Manganese (Mn)-Total			103.7		%		80-120	16-MAR-21
Molybdenum (Mo)-Total			101.1		%		80-120	16-MAR-21
Nickel (Ni)-Total			100.9		%		80-120	16-MAR-21
Phosphorus (P)-Total			108.4		%		70-130	16-MAR-21
Potassium (K)-Total			105.4		%		80-120	16-MAR-21
Rubidium (Rb)-Total			103.3		%		80-120	16-MAR-21
Selenium (Se)-Total			101.1		%		80-120	16-MAR-21
Silicon (Si)-Total			105.1		%		60-140	16-MAR-21
Silver (Ag)-Total			102.8		%		80-120	16-MAR-21
Sodium (Na)-Total			106.1		%		80-120	16-MAR-21
Strontium (Sr)-Total			102.8		%		80-120	16-MAR-21
Sulfur (S)-Total			101.5		%		80-120	16-MAR-21
Thallium (TI)-Total			104.6		%		80-120	16-MAR-21
Tellurium (Te)-Total			95.7		%		80-120	16-MAR-21
Thorium (Th)-Total			107.0		%		80-120	16-MAR-21
Tin (Sn)-Total			102.7		%		80-120	16-MAR-21
Titanium (Ti)-Total			98.2		%		80-120	16-MAR-21
Tungsten (W)-Total			102.5		%		80-120	16-MAR-21
Uranium (U)-Total			109.6		%		80-120	16-MAR-21
Vanadium (V)-Total			105.5		%		80-120	16-MAR-21
Zinc (Zn)-Total			101.8		%		80-120	16-MAR-21
Zirconium (Zr)-Total			100.2		%		80-120	16-MAR-21
WG3502672-1 MB Aluminum (Al)-Total			<0.0050		mg/L		0.005	16 MAD 21
Antimony (Sb)-Total			<0.0030	1	mg/L		0.0001	16-MAR-21
Arsenic (As)-Total			<0.00010				0.0001	16-MAR-21
Barium (Ba)-Total			<0.00010		mg/L		0.0001	16-MAR-21
Danum (Da)-10lal			<0.00010	,	mg/L		0.0001	16-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 11 of 17

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5401825								
WG3502672-1 MB Beryllium (Be)-Total			<0.00010		mg/L		0.0001	16-MAR-21
Bismuth (Bi)-Total			<0.000050		mg/L		0.00005	16-MAR-21
Boron (B)-Total			<0.010		mg/L		0.01	16-MAR-21
Cadmium (Cd)-Total			<0.000005	С	mg/L		0.000005	16-MAR-21
Calcium (Ca)-Total			<0.050		mg/L		0.05	16-MAR-21
Chromium (Cr)-Total			<0.00050		mg/L		0.0005	16-MAR-21
Cesium (Cs)-Total			<0.000010		mg/L		0.00001	16-MAR-21
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	16-MAR-21
Copper (Cu)-Total			<0.00050		mg/L		0.0005	16-MAR-21
Iron (Fe)-Total			<0.010		mg/L		0.01	16-MAR-21
Lead (Pb)-Total			<0.000050		mg/L		0.00005	16-MAR-21
Lithium (Li)-Total			<0.0010		mg/L		0.001	16-MAR-21
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	16-MAR-21
Manganese (Mn)-Total			<0.00050		mg/L		0.0005	16-MAR-21
Molybdenum (Mo)-Total			<0.000050		mg/L		0.00005	16-MAR-21
Nickel (Ni)-Total			<0.00050		mg/L		0.0005	16-MAR-21
Phosphorus (P)-Total			<0.050		mg/L		0.05	16-MAR-21
Potassium (K)-Total			< 0.050		mg/L		0.05	16-MAR-21
Rubidium (Rb)-Total			<0.00020		mg/L		0.0002	16-MAR-21
Selenium (Se)-Total			<0.000050		mg/L		0.00005	16-MAR-21
Silicon (Si)-Total		•	<0.10		mg/L		0.1	16-MAR-21
Silver (Ag)-Total			<0.000050		mg/L		0.00005	16-MAR-21
Sodium (Na)-Total			< 0.050		mg/L		0.05	16-MAR-21
Strontium (Sr)-Total			<0.0010		mg/L		0.001	16-MAR-21
Sulfur (S)-Total			<0.50		mg/L		0.5	16-MAR-21
Thallium (TI)-Total			<0.000010		mg/L		0.00001	16-MAR-21
Tellurium (Te)-Total			<0.00020		mg/L		0.0002	16-MAR-21
Thorium (Th)-Total			<0.00010		mg/L		0.0001	16-MAR-21
Tin (Sn)-Total			<0.00010		mg/L		0.0001	16-MAR-21
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	16-MAR-21
Tungsten (W)-Total			<0.00010		mg/L		0.0001	16-MAR-21
Uranium (U)-Total			<0.000010		mg/L		0.00001	16-MAR-21
Vanadium (V)-Total			<0.00050		mg/L		0.0005	16-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 12 of 17

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5401825 WG3502672-1 MB Zinc (Zn)-Total			<0.0030		mg/L		0.003	40 MAD 04
Zirconium (Zr)-Total			<0.0030		mg/L		0.003	16-MAR-21 16-MAR-21
		WC2502672 2	<0.00020		mg/L		0.0002	16-WAR-21
WG3502672-5 MS Aluminum (Al)-Total		WG3502672-3	101.0		%		70-130	16-MAR-21
Antimony (Sb)-Total			106.4		%		70-130	16-MAR-21
Arsenic (As)-Total			101.5		%		70-130	16-MAR-21
Barium (Ba)-Total			N/A	MS-B	%		-	16-MAR-21
Beryllium (Be)-Total			104.0		%		70-130	16-MAR-21
Bismuth (Bi)-Total			97.7		%		70-130	16-MAR-21
Boron (B)-Total			92.7		%		70-130	16-MAR-21
Cadmium (Cd)-Total			98.9		%		70-130	16-MAR-21
Calcium (Ca)-Total			N/A	MS-B	%		-	16-MAR-21
Chromium (Cr)-Total			101.6		%		70-130	16-MAR-21
Cesium (Cs)-Total			104.7		%		70-130	16-MAR-21
Cobalt (Co)-Total			100.6		%		70-130	16-MAR-21
Copper (Cu)-Total			97.0		%		70-130	16-MAR-21
Iron (Fe)-Total			N/A	MS-B	%		-	16-MAR-21
Lead (Pb)-Total			98.8		%		70-130	16-MAR-21
Lithium (Li)-Total			N/A	MS-B	%		-	16-MAR-21
Magnesium (Mg)-Total			N/A	MS-B	%		-	16-MAR-21
Manganese (Mn)-Total			N/A	MS-B	%		-	16-MAR-21
Molybdenum (Mo)-Total			105.1		%		70-130	16-MAR-21
Phosphorus (P)-Total			111.3		%		70-130	16-MAR-21
Potassium (K)-Total			N/A	MS-B	%		-	16-MAR-21
Rubidium (Rb)-Total			100.3		%		70-130	16-MAR-21
Selenium (Se)-Total			99.8		%		70-130	16-MAR-21
Silicon (Si)-Total			N/A	MS-B	%		-	16-MAR-21
Silver (Ag)-Total			99.4		%		70-130	16-MAR-21
Sodium (Na)-Total			N/A	MS-B	%		-	16-MAR-21
Strontium (Sr)-Total			N/A	MS-B	%		-	16-MAR-21
Sulfur (S)-Total			N/A	MS-B	%		-	16-MAR-21
Thallium (TI)-Total			98.1		%		70-130	16-MAR-21
Tellurium (Te)-Total			87.2		%		70-130	16-MAR-21
Thorium (Th)-Total			102.4		%		70-130	16-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 13 of 17

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5401825								
WG3502672-5 MS Tin (Sn)-Total		WG3502672-3	102.0		%		70-130	16-MAR-21
Titanium (Ti)-Total			103.1		%		70-130	16-MAR-21
Tungsten (W)-Total			99.9		%		70-130	16-MAR-21
Uranium (U)-Total			N/A	MS-B	%		-	16-MAR-21
Vanadium (V)-Total			110.8	2	%		70-130	16-MAR-21
Zinc (Zn)-Total			101.2		%		70-130	16-MAR-21
Zirconium (Zr)-Total			101.0		%		70-130	16-MAR-21
NH3-F-WT	Water							
Batch R5406856								
WG3504783-3 DUP		WG3504783-5						
Ammonia, Total (as N)		<0.010	<0.010	RPD-NA	mg/L	N/A	20	19-MAR-21
WG3504783-2 LCS Ammonia, Total (as N)			100.5		%		85-115	19-MAR-21
WG3504783-1 MB Ammonia, Total (as N)			<0.010		mg/L		0.01	19-MAR-21
WG3504783-4 MS Ammonia, Total (as N)		WG3504783-5	98.6		%		75-125	19-MAR-21
NO2-IC-WT	Water							
Batch R5403000								
WG3503957-4 DUP Nitrite (as N)		WG3503957-3 <0.010	<0.010	RPD-NA	mg/L	N/A	20	17-MAR-21
WG3503957-2 LCS Nitrite (as N)		_	99.5		%		90-110	17-MAR-21
WG3503957-1 MB			0.040					
Nitrite (as N)			<0.010		mg/L		0.01	17-MAR-21
WG3503957-5 MS Nitrite (as N)		WG3503957-3	98.1		%		75-125	17-MAR-21
NO3-IC-WT	Water							
Batch R5403000								
WG3503957-4 DUP Nitrate (as N)		WG3503957-3 0.865	0.866		mg/L	0.2	20	17-MAR-21
WG3503957-2 LCS Nitrate (as N)			99.4		%		90-110	17-MAR-21
WG3503957-1 MB Nitrate (as N)			<0.020		mg/L		0.02	17-MAR-21
WG3503957-5 MS		WG3503957-3						

Workorder: L2566855

Report Date: 15-APR-21

Page 14 of 17

Client:

Thurber Engineering Ltd. (Oakville) 2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO3-IC-WT Batch R5403000 WG3503957-5 MS Nitrate (as N)	Water	WG3503957-3	97.3		%		75-125	17-MAR-21
P-T-COL-WT Batch R5407361 WG3505159-3 DUP	Water	L2567022-1						
Phosphorus, Total WG3505159-2 LCS Phosphorus, Total		0.0316	0.0319 98.0		mg/L %	1.2	20 80-120	22-MAR-21 22-MAR-21
WG3505159-1 MB Phosphorus, Total WG3505159-4 MS		L2567022-1	<0.0030		mg/L		0.003	22-MAR-21
Phosphorus, Total PH-WT Batch R5401759	Water		92.3	X	%		70-130	22-MAR-21
WG3502803-4 DUP pH		WG3502803-3 8.22	8.26	J	pH units	0.04	0.2	16-MAR-21
WG3502803-2 LCS pH PO4-DO-COL-WT	Water		7.00		pH units		6.9-7.1	16-MAR-21
Batch R5402904 WG3504192-3 DUP Orthophosphate-Dissolv		L2566427-1 0.0287	0.0295		mg/L	2.8	20	18-MAR-21
WG3504192-2 LCS Orthophosphate-Dissolv	ed (as P)		92.8		%		80-120	18-MAR-21
WG3504192-1 MB Orthophosphate-Dissolv	ed (as P)		<0.0030		mg/L		0.003	18-MAR-21
WG3504192-4 MS Orthophosphate-Dissolv	ed (as P)	L2566427-1	N/A	MS-B	%		-	18-MAR-21
SO4-IC-N-WT	Water							
Batch R5403000 WG3503957-4 DUP Sulfate (SO4)		WG3503957-3 1.47	1.48		mg/L	0.1	20	17-MAR-21
WG3503957-2 LCS Sulfate (SO4)			100.6		%		90-110	17-MAR-21
WG3503957-1 MB Sulfate (SO4)			<0.30		mg/L		0.3	17-MAR-21

Workorder: L2566855

Report Date: 15-APR-21

Page 15 of 17

Client:

Thurber Engineering Ltd. (Oakville) 2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SO4-IC-N-WT	Water							
Batch R5403000 WG3503957-5 MS Sulfate (SO4)		WG3503957-3	99.0		%		75-125	17-MAR-21
SOLIDS-TDS-WT	Water							
Batch R5407798 WG3505168-3 DUP Total Dissolved Solids		L2566855-1 506	528		mg/L	4.3	20	19-MAR-21
WG3505168-2 LCS Total Dissolved Solids			92.3		%		85-115	19-MAR-21
WG3505168-1 MB Total Dissolved Solids			<10		mg/L		10	19-MAR-21
SOLIDS-TSS-WT	Water							
Batch R5408260 WG3505171-3 DUP Total Suspended Solids		L2566855-1 140	163		mg/L	15	20	20-MAR-21
WG3505171-2 LCS Total Suspended Solids			103.5		%		85-115	20-MAR-21
WG3505171-1 MB Total Suspended Solids			<3.0	•	mg/L		3	20-MAR-21
TOC-WT	Water		Ť					
Batch R5406780 WG3505015-3 DUP Total Organic Carbon		WG3505015-5 11.9	12.4		mg/L	3.9	20	19-MAR-21
WG3505015-2 LCS			00.4		0/			
Total Organic Carbon WG3505015-1 MB			99.4		%		80-120	19-MAR-21
Total Organic Carbon			<0.50		mg/L		0.5	19-MAR-21
WG3505015-4 MS Total Organic Carbon		WG3505015-5	N/A	MS-B	%		-	19-MAR-21
TURBIDITY-WT	Water							
Batch R5401905 WG3502964-3 DUP		L2566851-17						
Turbidity		33.5	33.0		NTU	1.5	15	16-MAR-21
WG3502964-2 LCS Turbidity			99.97		%		85-115	16-MAR-21
WG3502964-1 MB Turbidity			<0.10		NTU		0.1	16-MAR-21

Workorder: L2566855 Report Date: 15-APR-21

Client: Thurber Engineering Ltd. (Oakville)

Page 16 of 17

2010 Winston Park Drive Unit 103 Oakville ON L6H 5R7

Contact: Rachel Bourassa

Legend:

Limit	t ALS Control Limit (Data Quality Objectives)	
DUP	P Duplicate	
RPD	Relative Percent Difference	
N/A	Not Available	
LCS	S Laboratory Control Sample	
SRM	M Standard Reference Material	
MS	Matrix Spike	
MSD	D Matrix Spike Duplicate	
ADE	Average Desorption Efficiency	
MB	Method Blank	
IRM	Internal Reference Material	
CRM	M Certified Reference Material	
CCV	/ Continuing Calibration Verification	
CVS	S Calibration Verification Standard	
LCSD	SD Laboratory Control Sample Duplicate	

Sample Parameter Qualifier Definitions:

Qualifier	Description
В	Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2566855 Report Date: 15-APR-21

Thurber Engineering Ltd. (Oakville) Client:

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Rachel Bourassa

Page 17 of 17

Hold Time Exceedances:

Contact:

Sample						
ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
1	12-MAR-21 14:00	15-MAR-21 20:00	48	78	hours	EHTR
2	12-MAR-21 13:00	15-MAR-21 20:00	48	79	hours	EHTR
1	12-MAR-21 14:00	16-MAR-21 15:15	48	97	hours	EHTR
2	12-MAR-21 13:00	16-MAR-21 15:15	48	98	hours	EHTR
	1 2 1	1 12-MAR-21 14:00 2 12-MAR-21 13:00 1 12-MAR-21 14:00	1 12-MAR-21 14:00 15-MAR-21 20:00 15-MAR-21 20:00 15-MAR-21 13:00 16-MAR-21 15:15	1 12-MAR-21 14:00 15-MAR-21 20:00 48 2 12-MAR-21 13:00 15-MAR-21 20:00 48 1 12-MAR-21 14:00 16-MAR-21 15:15 48	1 12-MAR-21 14:00 15-MAR-21 20:00 48 79 1 12-MAR-21 13:00 15-MAR-21 20:00 48 79 1 12-MAR-21 14:00 16-MAR-21 15:15 48 97	ID Sampling Date Date Processed Rec. HT Actual HT Units 1 12-MAR-21 14:00 15-MAR-21 20:00 48 78 hours 2 12-MAR-21 13:00 15-MAR-21 20:00 48 79 hours 1 12-MAR-21 14:00 16-MAR-21 15:15 48 97 hours

Legend & Qualifier Definitions:

Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended. EHTR-FM:

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

Exceeded ALS recommended hold time prior to analysis. EHT:

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2566855 were received on 15-MAR-21 15:30.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain

www.alsglobal.com

L2566855-COFC

COC Number: 20 -

Page \ of

Report To	Contact and company name below will ap	pear on the final report	1	Reports / I	Recipients			_	Т	umarc	und T	ime (T	AT) R	equest	ed						—		
Company:	Thurber Engineering Ltd.		Select Report F	Format: PDF		DD (DIGITAL)	√ R	outine [<u> </u>	<u> </u>			\dashv						
Contact:	Rachel Bourassa	···	1	Reports with COA				day [P4								nimum							
Phone:	905-829-8666	-	✓ Compare Result	ults to Criteria on Report	- provide details belo	ow if box checked		day [P	-		•				-			AFF		BARCO			ERE
	Company address below will appear on the fi	nal report	Select Distribut	tion: 🗹 EMAIL	MAIL [FAX		day [P												(ALS us	e only)	•	
Street:	2010 Winston Park Drive, Suite 103		Email 1 or Fax	rbourassa@thurb	er.ca		L_ Sa	day [E] ame day	[E2] i	f receiv	ed by 1	0am M	1-5 - 20	10% rus	h surcha	irge. Ad	dition	al					
City/Province:	Oakville, Ontario		Email 2			••.	fe ro	es may utine te	apply t sts	o rush r	esuests	on we	ekends,	statuto	ry holida	ays and	non-						
Postal Code:	L6H 5R7		Email 3					Date as	nd Tim	e Requ	ired fo	r all E8	P TAT	s :				1. 1.	1				
Invoice To	Same as Report To	□ NO		Invoice R	ecipients	·				For tea	sts that o	can not	be perfo	ormed ac	cording	to the T	AT requ	uested, y	ou will	be contact	æd.		
	Copy of Invoice with Report YES	□ NO	Select Invoice [Distribution: 🔽 E	MAIL MAIL	FAX					-			Ana	lysis	Reque	st	*******					
Company:	Thurber Engineering Ltd.		Email 1 or Fax	accountingON@th	nurber.ca		2			Indicate	Filtere	d (F), F	reserve	ed (P) o	r Filtere	and P	reserv	ed (F/P	below		\top	TΘ	<u></u>
Contact:			Email 2				CONTAINERS		1]				Ţ				1	STORAGE REQUIRED	흥
	Project Information		Oil	l and Gas Require	d Fields (client	use)]≨[_						Ì			Ì			٦_	3	٥
ALS Account #			AFE/Cost Center:		PO#]È	4	l is			ESS									15	2	es)
Job#: 30	726		Major/Minor Code:		Routing Code:] ố	4/SC	SS		ľ	8		₹							НОГР	뜅	윤
PO / AFE:		$\mathcal{L}(\mathcal{Q})$	Requisitioner:				_	Ğ	I,S	l oʻ		¥		AP.	ı		ω l				S	₹	🐧
LSD:		77	Location:	***	-		<u>ე</u> გ	Į Ę	Ę	₹		SN3		Ž			METALS					ΙË] = 1
ALS Lab Wor	rk Order # (lab use only):	66855	ALS Contact:	Amanda Overholster	Sampler:		NUMBER	ALK/BR/CL/F/N2/N3/PO4/SO4	COLOUR/EC/PH/TDS/TSS/TURB	HG/ION BAL/METALS	TP/NH3/TOC	SILICA/N2N3/HARDNESS		ON-SAN+STORM-NAP-WT			DISSOLVED ME				SAMPLES	EXTENDED 8	SUSPECTED HAZARD (see notes)
ALS Sample #	Sample Identification	and/or Coordinates	-	Date	Time	Comple Tons	1≅	/BR	l g	Š	H3/	S		SAN			ζ				ĮΞ		%
(lab use only)	(This description will	appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	١ź	¥	Ö	Ρ̈́	TP/	CALC		Š		TSS	SIG				۱§	12	၂ ကို
	вн06			12-Mar-21	14:00	GW	21	R	R	R	R	R		R		R	R		\neg		1		\Box
	BH04D	-		12-Mar-21	13:00	GW	21	R	R	R	R	R		R		R	R		\neg	\top	+		
					V		1	Ì					\Box			-+		\dashv	\dashv	+-	+	\dagger	\vdash
	· · · · · · · · · · · · · · · · · · ·	 				<u></u>	†	╁		 			\vdash	-	_	-		\dashv	+	+	╫	+	
					 		1	╁┈		-		<u> </u>	\vdash			+	\dashv	-+		-+-	+	+	╀
							├	+-	 -	-	-	ļ	\vdash			-+	_		_		—	+	—
							ļ	-		ļ	_				_	_	4		_	\bot	┸		<u> </u>
·					ļ		ļ	<u> </u>			L										丄		<u> </u>
							<u> </u>	<u> </u>															
																							\Box
ļ							İ													\top	1	†	
		- ··· · · · · · · · · · · · · · · · · ·					<u> </u>	1	_							\dashv	_	$\overline{}$	_		+	1	\vdash
D-i-l-i	Wester (District on the Law)	Notes / Specify L	imits for result e	valuation by selection	na from drop-dow	n below	 	ــــــــــــــــــــــــــــــــــــــ	<u> </u>		<u>. </u>	SAM	PLE R	ECEI	T DE	TAILS	(lab	use o	nlv)		-	1	
_	Water (DW) Samples (client use)		(E)	xcel COC only)			Cool	ing Me	ethod:		NONE	_			E PACK] COOLI	NG INI	TATED	
-	en from a Regulated DW System?	PWQO, 1	Namee	Storm	+ Sanita	ار	Subr	missio	n Con			_=] NO		
	res 🗌 no	. 65 4 5 7	· vufuite		0=47 04 000	٠ ٦		er Cus					_					stody S				ES 🗀	N/A
Are samples for	human consumption/ use?							IN	IITIAL	COOLE	R TEM		TURES						_	TEMPER/			
v	res 🔲 no						<u> </u>								T	2.1			14				
	SHIPMENT RELEASE (client use			INITIAL SHIPMEN		ab use only)						F	INAL	SHIP			PTIC	ON (lai	use	only)			
Released by:	el Bourassa 3/15/2	72.1 Time: 12.00	Received by:		Date:		Time	9 :	Rec	eived	by:		80		Date:	برأي	,	-			Tipp	<u>ښ</u>	
REFER TO BACK	el Bourassa 3/15/2 (PAGE FOR ALS LOCATIONS AND SAMPLIN	CINEORMATION	<u> </u>	NAM III	TE - LABORATOR	V 000V	<u> </u>	CLIEN					\mathcal{N}		3//	DIY					11	<u>[](C(</u>	

Thurber Engineering Ltd. (Oakville)

ATTN: Rachel Bourassa 2010 Winston Park Drive

Unit 103

Oakville ON L6H 5R7

Date Received: 15-MAR-21

Report Date: 15-APR-21 13:53 (MT)

Version: FINAL REV. 7

Client Phone: 905-829-8666

Certificate of Analysis

Lab Work Order #: L2566855

Project P.O. #: NOT SUBMITTED

Job Reference: 30726

C of C Numbers: Legal Site Desc:

Comments: ADDITIONAL 23-MAR-21 08:39

Amanda Overholster Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🗦

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2566855 CONT'D.... Job Reference: 30726 PAGE 2 of 24 15-APR-21 13:53 (MT)

Summary of Guideline Exceedances

Guideline ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit
-	panee Sanitary and Storameter exceedances)	orm Sewer By-Law 2012-39 - Onta	rio Napanee Sanitary Sewer Discharge Lii	mits		
` '	,	orm Sewer By-Law 2012-39 - Onta	ırio Napanee Storm Sewer Discharge Limi	tis		
L2566855-1	BH06	Total Metals	Manganese (Mn)-Total	0.554	0.05	mg/L
			Phosphorus (P)-Total	0.85	0.3	mg/L
			Zinc (Zn)-Total	0.097	0.04	mg/L
L2566855-2	BH04D	Total Metals	Manganese (Mn)-Total	0.0631	0.05	mg/L

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....

Job Reference: 30726

PAGE 3 of 24

15-APR-21 13:53 (MT)

Physical Tests - WATER

i ilyolodi rooto iliitleit					
			Lab ID	L2566855-1	L2566855-2
		Sampl	e Date	12-MAR-21	12-MAR-21
		San	nple ID	BH06	BH04D
		Guide	Limits		
Analyte	Unit	#1	#2		
рН	pH units	-	6.0-9.5	7.60	7.91
Total Suspended Solids	mg/L	350	-	140 DLHC	23.3

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....

Job Reference: 30726

PAGE 4 of 24

15-APR-21 13:53 (MT)

Anions and Nutrients - WATER

			Lab ID	L2566855-1	L2566855-2
		Sampl	e Date	12-MAR-21	12-MAR-21
		Sam	ple ID	BH06	BH04D
Analyte	Unit	Guide #1	Limits #2		
Fluoride (F)	mg/L	10	-	0.093	0.143
Total Kjeldahl Nitrogen	mg/L	100	-	0.340	0.150
Phosphorus, Total	mg/L	_	-	0.148	0.0111

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....

Job Reference: 30726

PAGE 5 of 24

15-APR-21 13:53 (MT)

Cyanides - WATER

	L	ab ID	L2566855-1	L2566855-2
	Sample	Date	12-MAR-21	12-MAR-21
	Samp	ole ID	BH06	BH04D
	Guide L	imits		
Unit	Guide L #1	imits. #2		
		Sample	Lab ID Sample Date Sample ID	Sample Date 12-MAR-21

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

L2566855 CONT'D....

Job Reference: 30726

PAGE 6 of 24

15-APR-21 13:53 (MT)

Bacteriological Tests - WATER

_actog.ca					
			Lab ID	L2566855-1	L2566855-2
		Sampl	e Date	12-MAR-21	12-MAR-21
		San	nple ID	BH06	BH04D
		Guide	Limits		
Analyte	Unit	#1	#2		
E. Coli	CFU/100n L	ı -	-	0 PEHR	O PEHR

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....

Job Reference: 30726

PAGE 7 of 24

15-APR-21 13:53 (MT)

Total Metals - WATER

		Lab ID Sample Date Sample ID		L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D
Analyte	Unit	Guide #1	Limits #2		
Aluminum (Al)-Total	mg/L	50	-	21.0 DLHC	0.0837
Antimony (Sb)-Total	mg/L	5	-	<0.0010 DLHC	0.00022
Arsenic (As)-Total	mg/L	1.0	0.02	0.0039 ^{DLHC}	0.00117
Barium (Ba)-Total	mg/L	-	-	0.596 DLHC	0.214
Beryllium (Be)-Total	mg/L	-	-	<0.0010 DLHC	<0.00010
Bismuth (Bi)-Total	mg/L	-	-	< 0.00050 DLHC	<0.000050
Boron (B)-Total	mg/L	-	-	<0.10 DLHC	0.040
Cadmium (Cd)-Total	mg/L	0.7	0.008	0.000148 ^{DLHC}	<0.0000050
Calcium (Ca)-Total	mg/L	-	-	183 DLHC	70.1
Cesium (Cs)-Total	mg/L	-	-	0.00154 DLHC	0.000013
Chromium (Cr)-Total	mg/L	4	0.04	0.0316 ^{DLHC}	<0.00050
Cobalt (Co)-Total	mg/L	5	-	0.0129 ^{DLHC}	0.00103
Copper (Cu)-Total	mg/L	2	0.04	0.0353 ^{DLHC}	<0.00050
Iron (Fe)-Total	mg/L	-	-	26.4 DLHC	0.086
Lead (Pb)-Total	mg/L	1.0	0.12	0.0247 ^{DLHC}	0.000082
Lithium (Li)-Total	mg/L	-	-	0.022 DLHC	0.0075
Magnesium (Mg)-Total	mg/L	-	-	49.0 DLHC	45.0
Manganese (Mn)-Total	mg/L	5	0.05	0.554 DLHC	0.0631
Mercury (Hg)-Total	mg/L	0.01	0.0004	0.0000065	<0.0000050
Molybdenum (Mo)-Total	mg/L	5	-	0.00056 ^{DLHC}	0.00316
Nickel (Ni)-Total	mg/L	2	0.08	0.0287 ^{DLHC}	0.00173
Phosphorus (P)-Total	mg/L	10	0.3	0.85 DLHC	<0.050
Potassium (K)-Total	mg/L	-	-	8.15 DLHC	2.47
Rubidium (Rb)-Total	mg/L	-	-	0.0373 ^{DLHC}	0.00172
Selenium (Se)-Total	mg/L	1.0	0.02	< 0.00050 DLHC	0.000258
Silicon (Si)-Total	mg/L	-	-	46.6 DLHC	11.0
Silver (Ag)-Total	mg/L	5.0	0.12	< 0.00050 DLHC	<0.000050
Sodium (Na)-Total	mg/L	-	-	36.3 DLHC	45.5
Strontium (Sr)-Total	mg/L	-	-	0.496 DLHC	0.969
Sulfur (S)-Total	mg/L	-	-	10.4 DLHC	22.1

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D.... Job Reference: 30726 PAGE 8 of 24 15-APR-21 13:53 (MT)

Total Metals - WATER

Sample Date Sample ID 12-MAR-21 12-MAR-21 12-MAR-21 BH06 BH0	i Otal Mictais II	/\! - !\					
Sample ID BH06 BH				ı	Lab ID	L2566855-1	L2566855-2
Analyte Guide Limits H1 H2				Sampl	e Date	12-MAR-21	12-MAR-21
Analyte Unit #1 #2 Tellurium (Te)-Total mg/L - - <0.0020 CLHC <0.001 Thallium (Tl)-Total mg/L - - 0.0003 CLHC 0.000 Thorium (Th)-Total mg/L - - 0.0053 CLHC <0.00 Tin (Sn)-Total mg/L 5.0 - 0.0011 CLHC 0.00 Titanium (Ti)-Total mg/L 5.0 - 1.26 CLHC 0.00 Tungsten (W)-Total mg/L - - <0.0012 CLHC <0.00 Uranium (U)-Total mg/L - - 0.0012 CLHC <0.00 Vanadium (V)-Total mg/L - - 0.0438 CLHC <0.00 Zinc (Zn)-Total mg/L 2 0.04 0.097 CLHC <0.00				Sam	ple ID	BH06	BH04D
Tellurium (Te)-Total mg/L 0.0020 0.00 Thallium (Tl)-Total mg/L 0.00031 0.00 Thorium (Th)-Total mg/L 0.0053 0.00 Thorium (Th)-Total mg/L 0.0053 0.00 Tin (Sn)-Total mg/L 5.0 - 0.0011 0.00 Titanium (Ti)-Total mg/L 5.0 - 1.26 0.00 Tungsten (W)-Total mg/L <0.0010 0.00 Uranium (U)-Total mg/L 0.0012 0.00 Vanadium (V)-Total mg/L 0.0438 0.00 Zinc (Zn)-Total mg/L 2 0.04 0.097 0.00 Zinc (Zn)-Total mg/L 2 0.04 0.097 0.00				Guide	Limits		
Thallium (TI)-Total mg/L - - 0.0003 PLHC 0.000 Thorium (Th)-Total mg/L - - 0.0053 PLHC <0.00 Tin (Sn)-Total mg/L 5.0 - 0.001 PLHC 0.00 Titanium (Ti)-Total mg/L 5.0 - 1.26 PLHC 0.00 Tungsten (W)-Total mg/L - - <0.0010 PLHC <0.00 Uranium (U)-Total mg/L - - 0.0438 PLHC 0.00 Vanadium (V)-Total mg/L - - 0.0438 PLHC 0.00 Zinc (Zn)-Total mg/L 2 0.04 0.097 PLHC <0.00	Analyte		Unit	#1	#2		
Thorium (Th)-Total mg/L - - 0.0053 ^{DLHC} <0.00 Tin (Sn)-Total mg/L 5.0 - 0.0011 ^{DLHC} 0.00 Titanium (Ti)-Total mg/L 5.0 - 1.26 ^{DLHC} 0.00 Tungsten (W)-Total mg/L - - <0.0012 ^{BLHC} <0.00	Tellurium (Te)-Total		mg/L	-	-	<0.0020 DLHC	<0.00020
Tin (Sn)-Total mg/L 5.0 - 0.0011 DLHC 0.00 d Titanium (Ti)-Total mg/L 5.0 - 1.26 DLHC 0.00 d Tungsten (W)-Total mg/L - - <0.0010 DLHC	Thallium (TI)-Total		mg/L	-	-	0.00031 PLHC	0.000016
Titanium (Ti)-Total mg/L 5.0 - 1.26 PLHC 0.00 PLHC Tungsten (W)-Total mg/L - - <0.0010 PLHC	Thorium (Th)-Total		mg/L	-	-	0.0053 ^{DLHC}	<0.00010
Tungsten (W)-Total mg/L - - < 0.0010 PIHC < 0.001 Uranium (U)-Total mg/L - - 0.00123 PIHC 0.00 Vanadium (V)-Total mg/L - - 0.0438 PIHC 0.00 Zinc (Zn)-Total mg/L 2 0.04 0.097 PIHC < 0.00	Tin (Sn)-Total		mg/L	5.0	-		0.00198
Uranium (U)-Total mg/L - - 0.00123 PUHC 0.00 C Vanadium (V)-Total mg/L - - 0.0438 PUHC 0.00 C Zinc (Zn)-Total mg/L 2 0.04 0.097 PUHC <0.00 C	Titanium (Ti)-Total		mg/L	5.0	-	1.26 DLHC	0.00445
Vanadium (V)-Total mg/L - - 0.0438 ^{DLHC} 0.00 Zinc (Zn)-Total mg/L 2 0.04 0.097 DLHC <0.00	Tungsten (W)-Total		mg/L	-	-	<0.0010 DLHC	<0.00010
Zinc (Zn)-Total mg/L 2 0.04 0.097 DLHC <0.00	Uranium (U)-Total		mg/L	-	-	0.00123 ^{DLHC}	0.00221
	Vanadium (V)-Total		mg/L	-	-	0.0438 ^{DLHC}	0.00136
Zirconium (Zr)-Total mg/L <0.002 ^{DLHC} <0.00	Zinc (Zn)-Total		mg/L	2	0.04	0.097 DLHC	<0.0030
	Zirconium (Zr)-Total		mg/L	-	-	<0.0020 DLHC	<0.00020

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....

Job Reference: 30726

PAGE 9 of 24

15-APR-21 13:53 (MT)

Speciated Metals - WATER

opoolatoa motalo					
		ı	Lab ID	L2566855-1	L2566855-2
		Sample	e Date	12-MAR-21	12-MAR-21
		Sam	ple ID	BH06	BH04D
Analyte	Unit	Guide #1	Limits #2		
Chromium, Hexavalent	mg/L	2.0	0.08	<0.00050	<0.00050

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....

Job Reference: 30726

PAGE 10 of 24

15-APR-21 13:53 (MT)

Aggregate Organics - WATER

		Lab ID Sample Date Sample ID		L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D
Analyte	Unit	Guide #1	Limits #2		
BOD Carbonaceous	mg/L	-	-	<3.0 BODL	<3.0 BODL
COD	mg/L	800	40	15	<10
Oil and Grease, Total	mg/L	-	-	<5.0	<5.0
Animal/Veg Oil & Grease	mg/L	150	-	<5.0	<5.0
Mineral Oil and Grease	mg/L	15	-	<2.5	<2.5
Phenols (4AAP)	mg/L	1.0	0.008	<0.0010	<0.0010

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D.... Job Reference: 30726 PAGE 11 of 24 15-APR-21 13:53 (MT)

Volatile Organic Compou	nds - WATER				
		Sample	ab ID Date ple ID	L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D
Analyte	Unit	Guide #1	Limits #2		
Acetone	ug/L	-	-	<20 OWP	<20
Benzene	ug/L	10	2	<0.50 OWP	<0.50
Bromodichloromethane	ug/L	-	-	<1.0 OWP	<1.0
Bromoform	ug/L	-	-	<1.0 OWP	<1.0
Bromomethane	ug/L	-	-	<0.50 OWP	<0.50
Carbon Disulfide	ug/L	-	-	<1.0 OWP	<1.0
Carbon tetrachloride	ug/L	-	-	<0.20 OWP	<0.20
Chlorobenzene	ug/L	-	-	<0.50 OWP	<0.50
Dibromochloromethane	ug/L	-	-	<1.0 OWP	<1.0
Chloroethane	ug/L	-	-	<1.0 OWP	<1.0
Chloroform	ug/L	40	2	<1.0 OWP	<1.0
Chloromethane	ug/L	-	-	<1.0 OWP	<1.0
1,2-Dibromoethane	ug/L	-	-	<0.20 OWP	<0.20
1,2-Dichlorobenzene	ug/L	50	5.6	<0.50 OWP	<0.50
1,3-Dichlorobenzene	ug/L	-	-	<0.50 OWP	<0.50
1,4-Dichlorobenzene	ug/L	80	6.8	<0.50 OWP	<0.50
Dichlorodifluoromethane	ug/L	-	-	<1.0 OWP	<1.0
1,1-Dichloroethane	ug/L	-	-	<0.50 OWP	<0.50
1,2-Dichloroethane	ug/L	-	-	<0.50 OWP	<0.50
1,1-Dichloroethylene	ug/L	-	-	<0.50 OWP	<0.50
cis-1,2-Dichloroethylene	ug/L	4000	5.6	<0.50 OWP	<0.50
trans-1,2-Dichloroethylene	ug/L	-	-	<0.50 OWP	<0.50
Dichloromethane	ug/L	2000	5.2	<2.0 OWP	<2.0
1,2-Dichloropropane	ug/L	-	-	<0.50 OWP	<0.50
cis-1,3-Dichloropropene	ug/L	-	-	<0.30 OWP	<0.30
trans-1,3-Dichloropropene	ug/L	140	5.6	<0.30 OWP	<0.30
Ethylbenzene	ug/L	160	2	<0.50 OWP	<0.50
n-Hexane	ug/L	-	-	<0.50 OWP	<0.50
2-Hexanone	ug/L	-	-	<20 OWP	<20
Methyl Ethyl Ketone	ug/L	-	-	<20 OWP	<20

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D.... Job Reference: 30726 PAGE 12 of 24 15-APR-21 13:53 (MT)

		Lab ID Sample Date Sample ID		L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D
Analyte	Unit	Guide #1		51100	БПОТБ
Methyl Isobutyl Ketone	ug/L	-	-	<20 OWP	<20
MTBE	ug/L	-	-	<0.50 OWP	<0.50
Styrene	ug/L	-	-	<0.50 OWP	<0.50
1,1,1,2-Tetrachloroethane	ug/L	-	-	<0.50 OWP	< 0.50
1,1,2,2-Tetrachloroethane	ug/L	1400	-	<0.50 OWP	<0.50
Tetrachloroethylene	ug/L	1000	4.4	<0.50 OWP	<0.50
Toluene	ug/L	16	2	<0.40 OWP	<0.40
1,1,1-Trichloroethane	ug/L	-	-	<0.50 OWP	<0.50
1,1,2-Trichloroethane	ug/L	-	-	<0.50 OWP	<0.50
Trichloroethylene	ug/L	400	7.6	<0.50 OWP	<0.50
Trichlorofluoromethane	ug/L	-	-	<1.0 OWP	<1.0
Vinyl chloride	ug/L	-	-	<0.50 OWP	< 0.50
o-Xylene	ug/L	-	-	<0.30 OWP	<0.30
m+p-Xylenes	ug/L	-	-	<0.40 OWP	<0.40
Xylenes (Total)	ug/L	1400	4.4	<0.50	<0.50
Surrogate: 4-Bromofluorobenzene	%	-	-	86.9	86.9
Surrogate: 1,4-Difluorobenzene	%	-	-	99.5	99.4

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D.... Job Reference: 30726 PAGE 13 of 24 15-APR-21 13:53 (MT)

Polycyclic Aromatic Hydrocarbons -	WAT	ER			
		Lab ID Sample Date Sample ID		L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D
Analyte Ur	_	uide #1	Limits #2		
Acenaphthene uç	J/L	-	-	<0.020	<0.020
Acenaphthylene ug	J/L	-	-	<0.020	<0.020
Anthracene ug	J/L	-	-	<0.020	<0.020
Benzo(a)anthracene ug	J/L	-	-	<0.020	<0.020
Benzo(a)pyrene ug	J/L	-	-	<0.010	<0.010
Benzo(b&j)fluoranthene ug	J/L	-	-	<0.020	<0.020
Benzo(g,h,i)perylene ug	J/L	-	-	<0.020	<0.020
Benzo(k)fluoranthene ug	J/L	-	-	<0.020	<0.020
Chrysene ug	J/L	-	-	<0.020	<0.020
Dibenz(a,h)anthracene ug	J/L	-	-	<0.020	<0.020
Fluoranthene ug	J/L	-	-	<0.020	<0.020
Fluorene ug	J/L	-	-	<0.020	<0.020
Indeno(1,2,3-cd)pyrene ug	J/L	-	-	<0.020	<0.020
1+2-Methylnaphthalenes ug	J/L	-	-	<0.028	<0.028
1-Methylnaphthalene ug	J/L	-	-	<0.020	<0.020
2-Methylnaphthalene ug	J/L	-	-	<0.020	<0.020
Naphthalene ug	_J /L	-	-	<0.050	<0.050
Phenanthrene ug	_J /L	-	-	<0.020	<0.020
Pyrene uç	_J /L	-	-	<0.020	<0.020
Surrogate: Chrysene d12	6	-	-	52.1	51.3
Surrogate: Naphthalene d8	6	-	-	69.0	63.0
Surrogate: Phenanthrene d10	6	-	-	64.1	60.9

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

Total PAHs

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

< 0.095

< 0.095

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....

Job Reference: 30726

PAGE 14 of 24

15-APR-21 13:53 (MT)

Semi-Volatile Organics - WATER

			Lab ID	L2566855-1	L2566855-2
		Sampl	e Date	12-MAR-21	12-MAR-21
		Sam	ple ID	BH06	BH04D
Analyte	Unit	Guide #1	Limits #2		
Aldrin + Dieldrin	ug/L	0.2	0.08	<0.011	<0.011
3,3'-Dichlorobenzidine	ug/L	2	0.8	<0.40	<0.40
Di-n-butylphthalate	ug/L	80	15	<1.0	<1.0
Bis(2-ethylhexyl)phthalate	ug/L	12	8.8	<2.0	<2.0
Pentachlorophenol	ug/L	5	2	<0.50	<0.50
Surrogate: 2-Fluorobiphenyl	%	-	-	81.7	88.5
Surrogate: p-Terphenyl d14	%	-	-	98.9	100.2
Surrogate: 2,4,6-Tribromophenol	%	-	-	109.0	109.2

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....

Job Reference: 30726

PAGE 15 of 24

15-APR-21 13:53 (MT)

Polychlorinated Biphenyls - WATER

i olycillorillated bipliellyis -	AAVIFIZ				
			Lab ID	L2566855-1	L2566855-2
		Sampl	e Date	12-MAR-21	12-MAR-21
		San	nple ID	BH06	BH04D
Analyte	Unit	Guide #1	Limits #2		
Aroclor 1242	ug/L	-	-	<0.020	<0.020
Aroclor 1248	ug/L	-	-	<0.020	<0.020
Aroclor 1254	ug/L	-	-	<0.020	<0.020
Aroclor 1260	ug/L	-	-	<0.020	<0.020
Surrogate: Decachlorobiphenyl	%	-	-	82.9	117.3
Total PCBs	ug/L	-	-	<0.040	<0.040
Surrogate: Tetrachloro-m-xylene	%	-	-	119.9	94.1

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D.... Job Reference: 30726 PAGE 16 of 24 15-APR-21 13:53 (MT)

		Sample	Lab ID e Date ple ID	L2566855-1 12-MAR-21 BH06	L2566855-2 12-MAR-21 BH04D
Analyte	Unit	Guide #1	Limits #2		
Aldrin	ug/L	-	-	<0.0080	<0.0080
alpha-BHC	ug/L	-	-	<0.0080	<0.0080
beta-BHC	ug/L	-	-	<0.0080	<0.0080
gamma-hexachlorocyclohexane	ug/L	-	-	<0.0080	<0.0080
delta-BHC	ug/L	-	-	<0.0080	<0.0080
a-chlordane	ug/L	-	-	<0.0080	<0.0080
Chlordane (Total)	ug/L	100	40	<0.011	<0.011
g-chlordane	ug/L	-	-	<0.0080	<0.0080
o,p-DDD	ug/L	-	-	<0.0040	<0.0040
pp-DDD	ug/L	-	-	<0.0040	<0.0040
Total DDD	ug/L	-	-	<0.0057	<0.0057
o,p-DDE	ug/L	-	-	<0.0040	<0.0040
pp-DDE	ug/L	-	-	<0.0040	<0.0040
Total DDE	ug/L	-	-	<0.0057	<0.0057
op-DDT	ug/L	-	-	<0.0040	<0.0040
pp-DDT	ug/L	-	-	<0.0040	<0.0040
Total DDT	ug/L	-	-	<0.0057	<0.0057
DDT+Metabolites	ug/L	0.1	0.04	<0.0098	<0.0098
Dieldrin	ug/L	-	-	<0.0080	<0.0080
Endosulfan I	ug/L	-	-	<0.0070	<0.0070
Endosulfan II	ug/L	-	-	<0.0070	<0.0070
Endosulfan Sulfate	ug/L	-	-	<0.0070	<0.0070
Endrin	ug/L	-	-	< 0.025 RRR	<0.010
Endrin Aldehyde	ug/L	-	-	<0.010	<0.010
Heptachlor	ug/L	-	-	<0.0080	<0.0080
Heptachlor Epoxide	ug/L	-	-	<0.0080	<0.0080
Hexachlorobenzene	ug/L	0.1	0.04	<0.0080	<0.0080
Hexachlorobutadiene	ug/L	-	-	<0.0080	<0.0080
Hexachloroethane	ug/L	-	-	<0.0080	<0.0080
Methoxychlor	ug/L	-	-	<0.0080	<0.0080

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....

Job Reference: 30726

PAGE 17 of 24

15-APR-21 13:53 (MT)

Organochlorine Pesticides - WATER

Organiociniorine resticides	- WAILN				
			Lab ID	L2566855-1	L2566855-2
		Sample	e Date	12-MAR-21	12-MAR-21
		Sam	ple ID	BH06	BH04D
			Limits		
Analyte	Unit	#1	#2		
Mirex	ug/L	100	40	<0.0080	<0.0080
trans-Nonachlor	ug/L	-	-	<0.010	<0.010
Oxychlordane	ug/L	-	-	<0.0080	<0.0080
Pentachloronitrobenzene	ug/L	-	-	<0.010	<0.010
Surrogate: Decachlorobiphenyl	%	-	-	70.0	125.5
Surrogate: Tetrachloro-m-xylene	%	-	-	88.9	87.0

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2566855 CONT'D....

Job Reference: 30726

PAGE 18 of 24

15-APR-21 13:53 (MT)

Organic Parameters - WATER

Lab ID L2566855-1 Sample Date 12-MAR-21 Sample ID BH06	L2566855-2 12-MAR-21 BH04D
Campio Bato	
Sample ID BH06	BH04D
Guide Limits Analyte Unit #1 #2	
Nonylphenol ug/L - 1 <1.0	<1.0
Nonylphenol ug/L - 1 <1.0	
Nonylphenol Diethoxylates ug/L <0.10	<0.10
	<0.10 <2.0

Guide Limit #1: Ontario Napanee Sanitary Sewer Discharge Limits Guide Limit #2: Ontario Napanee Storm Sewer Discharge Limitis

Reference Information

L2566855 CONT'D.... Job Reference: 30726 PAGE 19 of 24 15-APR-21 13:53 (MT)

Additional Comments for Sample Listed:

Samplenum	Matrix	Report Remarks	Sample Comments
L2566855-1	Water	Note: RRR: Detection limits adjusted due to low recovery in LCS.	

Qualifiers for Individual Parameters Listed:

Qualifier	Description
PEHR	Parameter Exceeded Recommended Holding Time On Receipt: Proceed With Analysis As Requested.
BODL	Limit of Reporting for BOD was increased to account for the largest volume of sample tested.
OWP	Organic water sample contained visible sediment (must be included as part of analysis). Measured concentrations of organic substances in water can be biased high due to presence of

Reference Information

L2566855 CONT'D....
Job Reference: 30726
PAGE 20 of 24
15-APR-21 13:53 (MT)

sediment.

SRU Sample Received Unpreserved. Results may be biased low for indicated parameter(s)

DLHC Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

RRR Refer to Report Remarks for issues regarding this analysis

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

625-SAN-WT Water Ontario Sanitary Sewer SVOC Target SW-846 8270

List

Samples are extracted with solvent and then analyzed by GC/MS.

ALD+DIEL-CALC-WT Water Aldrin + Dieldrin Calculation CALCULATION

This calculation represents the sum of the aldrin and dieldrin analyzed for in a given sample.

ALK-SPEC-PCT-WT Water Automated Speciated Alkalinity APHA 2320B

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and

hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

BOD-C-WT Water BOD Carbonaceous APHA 5210 B (CBOD)

This analysis is carried out using procedures adapted from APHA Method 5210B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting and incubating a sample for a specified time period, and measuring the oxygen depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a glass fibre filter prior to dilution. Carbonaceous BOD (CBOD) is determined by adding a nitrification inhibitor to the diluted sample prior to incubation.

BR-IC-N-WT Water Bromide in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

CHLORDANE-T-CALC-WT Water Chlordane Total sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

CL-IC-N-WT Water Chloride by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CN-TOT-WT Water Cvanide, Total ISO 14403-2

Total cyanide is determined by the combination of UV digestion and distillation. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

When using this method, high levels of thiocyanate in samples can cause false positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, ALS recommends analysis for thiocyanate to check for this potential interference

COD-T-WT Water Chemical Oxygen Demand APHA 5220 D

This analysis is carried out using procedures adapted from APHA Method 5220 "Chemical Oxygen Demand (COD)". Chemical oxygen demand is determined using the closed reflux colourimetric method.

L2566855 CONT'D....
Job Reference: 30726
PAGE 21 of 24
15-APR-21 13:53 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

COLOUR-APPARENT-WT Water Colour APHA 2120

Apparent Colour is measured spectrophotometrically by comparison to platinum-cobalt standards using the single wavelength method after sample decanting. Colour measurements can be highly pH dependent, and apply to the pH of the sample as received (at time of testing), without pH adjustment. Concurrent measurement of sample pH is recommended.

CR-CR6-IC-WT Water Chromium +6 EPA 7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total chromium and the chromium (VI) results.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

DDD-DDE-DDT-CALC-WT Water DDD, DDE, DDT sums CALCULATION

Calculation of Total DDD, Total DDE and Total DDT

EC-SCREEN-WT Water Conductivity Screen (Internal Use APHA 2510

Only)

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

EC-WT Water Conductivity APHA 2510 B

Water samples can be measured directly by immersing the conductivity cell into the sample.

EC-WW-MF-WT Water E. Coli SM 9222D

A 100 mL volume of sample is filtered through a membrane, the membrane is placed on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h. Method ID: WT-TM-1200

ETL-N2N3-WT Water Calculate from NO2 + NO3 APHA 4110 B

ETL-SILICA-CALC-WT Water Calculate from SI-TOT-WT EPA 200.8

F-IC-N-WT Water Fluoride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

HARDNESS-CALC-WT Water Hardness APHA 2340 B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

are preferentially used for the flaturiess calculation.

HG-D-CVAA-WT Water Dissolved Mercury in Water by CVAAS EPA 1631E (mod)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

HG-T-CVAA-WT Water Total Mercury in Water by CVAAS EPA 1631E (mod)

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

IONBALANCE-OP03-WT Water Detailed Ion Balance Calculation APHA 1030E, 2330B, 2510A

L2566855 CONT'D.... Job Reference: 30726 PAGE 22 of 24 15-APR-21 13:53 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

MET-D-CCMS-WT Water Dissolved Metals in Water by CRC APHA 3030B/6020A (mod)

ICPMS

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-T-CCMS-WT Water Total Metals in Water by CRC ICPMS EPA 200.2/6020A (mod)

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

METHYLNAPS-CALC-WT Water PAH-Calculated Parameters SW846 8270

NH3-F-WT Water Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005. 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with

fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

NO2-IC-WT Water Nitrite in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-IC-WT Water Nitrate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NP,NPE-LCMS-WT Water Nonylphenols and Ethoxylates by J. Chrom A849 (1999) p.467-482

LC/MS-MS

Water samples are filtered and analyzed on LCMS/MS by direct injection.

OCP-ROUTINE-WT Water Pesticides, Organochlorine in Water SW846 8270

Samples are extracted using a solvent mixture and the resulting extracts are analyzed on GC/MSD

OGG-SPEC-CALC-WT Water Speciated Oil and Grease A/V Calc CALCULATION

Sample is extracted with hexane, sample speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then determined gravimetrically.

OGG-SPEC-WT Water Speciated Oil and Grease-Gravimetric APHA 5520 B

The procedure involves an extraction of the entire water sample with hexane. Sample speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then

determined gravimetrically.

P-T-COL-WT Water Total P in Water by Colour APHA 4500-P PHOSPHORUS

L2566855 CONT'D....
Job Reference: 30726
PAGE 23 of 24
15-APR-21 13:53 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is deteremined colourimetrically after persulphate digestion of the sample.

PAH-511-WT

Water

PAH-O. Reg 153/04 (July 2011)

SW846 3510/8270

Aqueous samples, fortified with surrogates, are extracted using liquid/liquid extraction technique. The sample extracts are concentrated and then analyzed using GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PAH-SUM-CALC-WT

Water

TOTAL PAH's

CALCULATION

Total PAH represents the sum of all PAH analytes reported for a given sample. Note that regulatory agencies and criteria differ in their definitions of Total PAH in terms of the individual PAH analytes to be included.

PCB-WT

Water

Polychlorinated Biphenyls

EPA 8082

PCBs are extracted from an aqueous sample at neutral pH with aliquots of dichloromethane using a modified separatory funnel technique. The extracts are analyzed by GC/MSD.

PH-WT

Water

pН

APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

PHENOLS-4AAP-WT

Water

Phenol (4AAP)

EPA 9066

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured colorimetrically.

PO4-DO-COL-WT

Water

Diss. Orthophosphate in Water by

APHA 4500-P PHOSPHORUS

Colour

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter.

SO4-IC-N-WT

Water

Sulfate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

SOLIDS-TDS-WT

Water

Total Dissolved Solids

APHA 2540C

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

SOLIDS-TSS-WT

Water

Suspended solids

APHA 2540 D-Gravimetric

A well-mixed sample is filtered through a weighed standard glass fibre filter and the residue retained is dried in an oven at 104–1°C for a minimum of four hours or until a constant weight is achieved.

TKN-F-WT

Water

TKN in Water by Fluorescence

J. ENVIRON. MONIT., 2005,7,37-42,RSC

Total Kjeldahl Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection

TOC-WT

Water

Total Organic Carbon

APHA 5310B

L2566855 CONT'D.... Job Reference: 30726 PAGE 24 of 24 15-APR-21 13:53 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

Sample is injected into a heated reaction chamber which is packed with an oxidative catalyst. The water is vaporized and the organic cabon is oxidized to carbon dioxide. The carbon dioxide is transported in a carrier gas and is measured by a non-dispersive infrared detector.

SW846 8260

TURBIDITY-WT Water Turbidity APHA 2130 B

Sample result is based on a comparison of the intensity of the light scattered by the sample under defined conditions with the intensity of light scattered by a standard reference suspension under the same conditions. Sample readings are obtained from a Nephelometer.

same conditions. Sample readings are obtained normal reprietometer

Water

Aqueous samples are analyzed by headspace-GC/MS.

XYLENES-SUM-CALC-WT Water Sum of Xylene Isomer Concentrations CALCULATION

Volatile Organic Compounds

Total xylenes represents the sum of o-xylene and m&p-xylene.

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

VOC-ROU-HS-WT

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2566855 Report Date: 15-APR-21 Page 1 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
625-SAN-WT Water							
Batch R5404640							
WG3504568-2 LCS 3,3'-Dichlorobenzidine		63.7		%		50-140	19-MAR-21
Bis(2-ethylhexyl)phthalate		96.7		%		50-140	19-MAR-21
Di-n-butylphthalate		100.7		%		50-140	19-MAR-21
Pentachlorophenol		118.3		%		50-140	19-MAR-21
WG3504568-1 MB 3,3'-Dichlorobenzidine		<0.40		ug/L		0.4	19-MAR-21
Bis(2-ethylhexyl)phthalate		<2.0		ug/L		2	19-MAR-21
Di-n-butylphthalate		<1.0		ug/L		1	19-MAR-21
Pentachlorophenol		<0.50		ug/L		0.5	19-MAR-21
Surrogate: 2-Fluorobiphenyl		89.1		%		40-130	19-MAR-21
Surrogate: 2,4,6-Tribromophenol		88.2		%		40-130	19-MAR-21
Surrogate: p-Terphenyl d14		118.8		%		40-130	19-MAR-21
WG3504568-4 MS 3,3'-Dichlorobenzidine	WG3504568-3	54.7		%		50-150	19-MAR-21
Bis(2-ethylhexyl)phthalate		94.3		%		50-150	19-MAR-21
Di-n-butylphthalate		95.3		%		50-150	19-MAR-21
Pentachlorophenol		118.2		%		50-150	19-MAR-21
BOD-C-WT Water							
Batch R5406442	1.0500055						
WG3503151-6 DUP BOD Carbonaceous	L2566855-2 <3.0	<3.0	RPD-NA	mg/L	N/A	30	16-MAR-21
WG3503151-7 LCS	· · · · · · · · · · · · · · · · · · ·		11. 2 10.1	3	. 47.1		10 10 10 10 10 10 10 10 10 10 10 10 10 1
BOD Carbonaceous		97.0		%		85-115	16-MAR-21
WG3503151-5 MB							
BOD Carbonaceous		<2.0		mg/L		2	16-MAR-21
CN-TOT-WT Water							
Batch R5402189							
WG3503477-3 DUP Cyanide, Total	L2566643-1 0.0024	0.0045	J	mg/L	0.0022	0.004	16-MAR-21
WG3503477-2 LCS Cyanide, Total		93.7		%		80-120	16-MAR-21
WG3503477-1 MB Cyanide, Total		<0.0020		mg/L		0.002	16-MAR-21
WG3503477-4 MS Cyanide, Total	L2566643-1	91.0		%		70-130	16-MAR-21

Page 2 of 22

Workorder: L2566855 Report Date: 15-APR-21

Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Contact: Rachel Bourassa

Client:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
COD-T-WT	Water							
Batch R54029	71							
WG3504241-3 DUI COD	•	L2566191-1 24	26		mg/L	8.4	20	18-MAR-21
WG3504241-2 LCS COD	3		100.2		%		85-115	18-MAR-21
WG3504241-1 MB COD			<10		mg/L		10	18-MAR-21
WG3504241-4 MS COD		L2566191-1	98.5		%		75-125	18-MAR-21
CR-CR6-IC-WT	Water					*		
Batch R54027	32							
WG3503887-4 DUI Chromium, Hexavale	nt	WG3503887-3 <0.00050	<0.00050	RPD-NA	mg/L	N/A	20	17-MAR-21
WG3503887-2 LCS Chromium, Hexavale			100.6		%		80-120	17-MAR-21
WG3503887-1 MB Chromium, Hexavale	nt		<0.00050		mg/L		0.0005	17-MAR-21
WG3503887-5 MS Chromium, Hexavale	nt	WG3503887-3	97.9		%		70-130	17-MAR-21
EC-WW-MF-WT	Water		7 7					
Batch R54025	20							
WG3502930-3 DUI E. Coli		L2566855-1 0	<10	RPD-NA	CFU/100mL	N/A	65	16-MAR-21
WG3502930-1 MB E. Coli			0		CFU/100mL		1	16-MAR-21
F-IC-N-WT	Water							
Batch R540300	00							
WG3503957-4 DUI Fluoride (F)		WG3503957-3 0.075	0.075		mg/L	0.1	20	17-MAR-21
WG3503957-2 LCS Fluoride (F)	3		102.3		%		90-110	17-MAR-21
WG3503957-1 MB Fluoride (F)			<0.020		mg/L		0.02	17-MAR-21
WG3503957-5 MS Fluoride (F)		WG3503957-3	100.5		%		75-125	17-MAR-21
HG-T-CVAA-WT	Water							

Workorder: L2566855 Report Date: 15-APR-21 Page 3 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-T-CVAA-WT	Water							
Batch R5401807 WG3502836-4 DUP Mercury (Hg)-Total		WG3502836-3 <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	16-MAR-21
WG3502836-2 LCS Mercury (Hg)-Total			103.0		%		80-120	16-MAR-21
WG3502836-1 MB Mercury (Hg)-Total			<0.0000050		mg/L		0.000005	16-MAR-21
WG3502836-6 MS Mercury (Hg)-Total		WG3502836-5	99.3		%		70-130	16-MAR-21
Batch R5407711 WG3505207-3 DUP Mercury (Hg)-Total		L2568290-1 <0.000050	<0.0000050	RPD-NA	mg/L	N/A	20	22 MAD 24
WG3505207-2 LCS Mercury (Hg)-Total		<0.0000000	100.0	RPD-NA	%	N/A		22-MAR-21
WG3505207-1 MB							80-120	22-MAR-21
Mercury (Hg)-Total WG3505207-4 MS		L2568425-1	<0.0000050		mg/L		0.000005	22-MAR-21
Mercury (Hg)-Total MET-T-CCMS-WT	Water		100.3		%		70-130	22-MAR-21
Batch R5401825	Water							
WG3502672-4 DUP Aluminum (Al)-Total		WG3502672-3 <0.050	<0.050	RPD-NA	mg/L	N/A	20	16-MAR-21
Antimony (Sb)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Arsenic (As)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Barium (Ba)-Total		2.07	2.07		mg/L	0.1	20	16-MAR-21
Beryllium (Be)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Bismuth (Bi)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-MAR-21
Boron (B)-Total		<0.10	<0.10	RPD-NA	mg/L	N/A	20	16-MAR-21
Cadmium (Cd)-Total		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	16-MAR-21
Calcium (Ca)-Total		400	404		mg/L	1.0	20	16-MAR-21
Chromium (Cr)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	16-MAR-21
Cesium (Cs)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	16-MAR-21
Cobalt (Co)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Copper (Cu)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	16-MAR-21
Iron (Fe)-Total		1.40	1.39		mg/L	0.5	20	16-MAR-21
Lead (Pb)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-MAR-21
Lithium (Li)-Total		0.014	0.014		mg/L	1.6	20	16-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 4 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5401825								
WG3502672-4 DUP		WG3502672-			m m/l	2.2	00	
Magnesium (Mg)-Total		177	178		mg/L	0.9	20	16-MAR-21
Manganese (Mn)-Total		0.157	0.157		mg/L	0.1	20	16-MAR-21
Molybdenum (Mo)-Tota	l	0.00158	0.00157		mg/L	0.5	20	16-MAR-21
Nickel (Ni)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	16-MAR-21
Phosphorus (P)-Total		<0.50	<0.50	RPD-NA	mg/L	N/A	20	16-MAR-21
Potassium (K)-Total		8.35	8.35		mg/L	0.1	20	16-MAR-21
Rubidium (Rb)-Total		0.0044	0.0038		mg/L	14	20	16-MAR-21
Selenium (Se)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-MAR-21
Silicon (Si)-Total		11.9	12.0		mg/L	0.9	20	16-MAR-21
Silver (Ag)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-MAR-21
Sodium (Na)-Total		847	856		mg/L	1.1	20	16-MAR-21
Strontium (Sr)-Total		3.93	4.04		mg/L	2.6	20	16-MAR-21
Sulfur (S)-Total		8.5	8.4		mg/L	1.4	20	16-MAR-21
Thallium (TI)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	16-MAR-21
Tellurium (Te)-Total		<0.0020	<0.0020	RPD-NA	mg/L	N/A	20	16-MAR-21
Thorium (Th)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Tin (Sn)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Titanium (Ti)-Total		< 0.0030	<0.0030	RPD-NA	mg/L	N/A	20	16-MAR-21
Tungsten (W)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAR-21
Uranium (U)-Total		0.00030	0.00030		mg/L	1.2	20	16-MAR-21
Vanadium (V)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	16-MAR-21
Zinc (Zn)-Total		<0.030	<0.030	RPD-NA	mg/L	N/A	20	16-MAR-21
Zirconium (Zr)-Total		<0.0020	<0.0020	RPD-NA	mg/L	N/A	20	16-MAR-21
WG3502672-2 LCS								
Aluminum (Al)-Total			105.0		%		80-120	16-MAR-21
Antimony (Sb)-Total			105.1		%		80-120	16-MAR-21
Arsenic (As)-Total			102.0		%		80-120	16-MAR-21
Barium (Ba)-Total			106.0		%		80-120	16-MAR-21
Beryllium (Be)-Total			99.9		%		80-120	16-MAR-21
Bismuth (Bi)-Total			104.4		%		80-120	16-MAR-21
Boron (B)-Total			100.6		%		80-120	16-MAR-21
Cadmium (Cd)-Total			103.2		%		80-120	16-MAR-21
Calcium (Ca)-Total			102.1		%		80-120	16-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 5 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5401825								
WG3502672-2 LCS Chromium (Cr)-Total			104.2		%		80-120	16-MAR-21
Cesium (Cs)-Total			104.9		%	•	80-120	16-MAR-21
Cobalt (Co)-Total			103.4		%		80-120	16-MAR-21
Copper (Cu)-Total			100.5		%		80-120	16-MAR-21
Iron (Fe)-Total			104.4		%		80-120	16-MAR-21
Lead (Pb)-Total			104.9		%		80-120	16-MAR-21
Lithium (Li)-Total			101.4		%		80-120	16-MAR-21
Magnesium (Mg)-Total			108.2		%		80-120	16-MAR-21
Manganese (Mn)-Total			103.7		%		80-120	16-MAR-21
Molybdenum (Mo)-Total			101.1		%		80-120	16-MAR-21
Nickel (Ni)-Total			100.9		%		80-120	16-MAR-21
Phosphorus (P)-Total			108.4		%		70-130	16-MAR-21
Potassium (K)-Total			105.4		%		80-120	16-MAR-21
Rubidium (Rb)-Total			103.3		%		80-120	16-MAR-21
Selenium (Se)-Total			101.1		%		80-120	16-MAR-21
Silicon (Si)-Total			105.1		%		60-140	16-MAR-21
Silver (Ag)-Total			102.8		%		80-120	16-MAR-21
Sodium (Na)-Total			106.1		%		80-120	16-MAR-21
Strontium (Sr)-Total			102.8		%		80-120	16-MAR-21
Sulfur (S)-Total			101.5		%		80-120	16-MAR-21
Thallium (TI)-Total			104.6		%		80-120	16-MAR-21
Tellurium (Te)-Total			95.7		%		80-120	16-MAR-21
Thorium (Th)-Total			107.0		%		80-120	16-MAR-21
Tin (Sn)-Total			102.7		%		80-120	16-MAR-21
Titanium (Ti)-Total			98.2		%		80-120	16-MAR-21
Tungsten (W)-Total			102.5		%		80-120	16-MAR-21
Uranium (U)-Total			109.6		%		80-120	16-MAR-21
Vanadium (V)-Total			105.5		%		80-120	16-MAR-21
Zinc (Zn)-Total			101.8		%		80-120	16-MAR-21
Zirconium (Zr)-Total			100.2		%		80-120	16-MAR-21
WG3502672-1 MB Aluminum (Al)-Total			<0.0050		mg/L		0.005	16-MAR-21
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	16-MAR-21
Arsenic (As)-Total			<0.00010		mg/L		0.0001	16-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 6 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5401825								
WG3502672-1 MB Barium (Ba)-Total			<0.00010		mg/L		0.0001	16-MAR-21
Beryllium (Be)-Total			<0.00010		mg/L	•	0.0001	16-MAR-21
Bismuth (Bi)-Total			<0.000050)	mg/L		0.00005	16-MAR-21
Boron (B)-Total			<0.010		mg/L		0.01	16-MAR-21
Cadmium (Cd)-Total			<0.000005	iC .	mg/L		0.000005	16-MAR-21
Calcium (Ca)-Total			<0.050		mg/L		0.05	16-MAR-21
Chromium (Cr)-Total			<0.00050		mg/L		0.0005	16-MAR-21
Cesium (Cs)-Total			<0.000010		mg/L		0.00001	16-MAR-21
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	16-MAR-21
Copper (Cu)-Total			<0.00050		mg/L		0.0005	16-MAR-21
Iron (Fe)-Total			<0.010		mg/L		0.01	16-MAR-21
Lead (Pb)-Total			<0.000050		mg/L		0.00005	16-MAR-21
Lithium (Li)-Total			<0.0010		mg/L		0.001	16-MAR-21
Magnesium (Mg)-Total		4	<0.0050		mg/L		0.005	16-MAR-21
Manganese (Mn)-Total			< 0.00050		mg/L		0.0005	16-MAR-21
Molybdenum (Mo)-Total			<0.000050		mg/L		0.00005	16-MAR-21
Nickel (Ni)-Total			<0.00050		mg/L		0.0005	16-MAR-21
Phosphorus (P)-Total			< 0.050		mg/L		0.05	16-MAR-21
Potassium (K)-Total			<0.050		mg/L		0.05	16-MAR-21
Rubidium (Rb)-Total			<0.00020		mg/L		0.0002	16-MAR-21
Selenium (Se)-Total		_	<0.000050)	mg/L		0.00005	16-MAR-21
Silicon (Si)-Total			<0.10		mg/L		0.1	16-MAR-21
Silver (Ag)-Total			<0.000050	1	mg/L		0.00005	16-MAR-21
Sodium (Na)-Total			<0.050		mg/L		0.05	16-MAR-21
Strontium (Sr)-Total			<0.0010		mg/L		0.001	16-MAR-21
Sulfur (S)-Total			<0.50		mg/L		0.5	16-MAR-21
Thallium (TI)-Total			<0.000010	1	mg/L		0.00001	16-MAR-21
Tellurium (Te)-Total			<0.00020		mg/L		0.0002	16-MAR-21
Thorium (Th)-Total			<0.00010		mg/L		0.0001	16-MAR-21
Tin (Sn)-Total			<0.00010		mg/L		0.0001	16-MAR-21
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	16-MAR-21
Tungsten (W)-Total			<0.00010		mg/L		0.0001	16-MAR-21
Uranium (U)-Total			<0.000010	1	mg/L		0.00001	16-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 7 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5401825 WG3502672-1 MB Vanadium (V)-Total			<0.00050		mg/L		0.0005	16-MAR-21
Zinc (Zn)-Total			<0.0030		mg/L		0.003	16-MAR-21
Zirconium (Zr)-Total			<0.00020		mg/L		0.0002	16-MAR-21
WG3502672-5 MS Aluminum (Al)-Total		WG3502672-3	101.0		%		70.400	
Antimony (Sb)-Total			101.0		%		70-130	16-MAR-21
Arsenic (As)-Total			100.4		%		70-130	16-MAR-21
Barium (Ba)-Total			N/A	MS-B	%		70-130	16-MAR-21
				INIO-R			70.400	16-MAR-21
Beryllium (Be)-Total Bismuth (Bi)-Total			104.0 97.7		%		70-130	16-MAR-21
Boron (B)-Total			92.7		%		70-130 70-130	16-MAR-21
Cadmium (Cd)-Total			98.9		%		70-130 70-130	16-MAR-21 16-MAR-21
Calcium (Ca)-Total			N/A	MS-B	%		70-130	16-MAR-21
Chromium (Cr)-Total			101.6	WO D	%		70-130	16-MAR-21
Cesium (Cs)-Total			104.7		%		70-130	16-MAR-21
Cobalt (Co)-Total			100.6		%		70-130	16-MAR-21
Copper (Cu)-Total			97.0		%		70-130	16-MAR-21
Iron (Fe)-Total			N/A	MS-B	%		-	16-MAR-21
Lead (Pb)-Total			98.8		%		70-130	16-MAR-21
Lithium (Li)-Total			N/A	MS-B	%		_	16-MAR-21
Magnesium (Mg)-Total			N/A	MS-B	%		-	16-MAR-21
Manganese (Mn)-Total			N/A	MS-B	%		_	16-MAR-21
Molybdenum (Mo)-Total			105.1		%		70-130	16-MAR-21
Phosphorus (P)-Total			111.3		%		70-130	16-MAR-21
Potassium (K)-Total			N/A	MS-B	%		-	16-MAR-21
Rubidium (Rb)-Total			100.3		%		70-130	16-MAR-21
Selenium (Se)-Total			99.8		%		70-130	16-MAR-21
Silicon (Si)-Total			N/A	MS-B	%		-	16-MAR-21
Silver (Ag)-Total			99.4		%		70-130	16-MAR-21
Sodium (Na)-Total			N/A	MS-B	%		-	16-MAR-21
Strontium (Sr)-Total			N/A	MS-B	%		-	16-MAR-21
Sulfur (S)-Total			N/A	MS-B	%		-	16-MAR-21
Thallium (TI)-Total			98.1		%		70-130	16-MAR-21
Tellurium (Te)-Total			87.2		%		70-130	16-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 8 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5401825								
WG3502672-5 MS Thorium (Th)-Total		WG3502672-3	102.4		%		70-130	16-MAR-21
Tin (Sn)-Total			102.0		%		70-130	16-MAR-21
Titanium (Ti)-Total			103.1		%		70-130	16-MAR-21
Tungsten (W)-Total			99.9		%		70-130	16-MAR-21
Uranium (U)-Total			N/A	MS-B	%		-	16-MAR-21
Vanadium (V)-Total			110.8		%		70-130	16-MAR-21
Zinc (Zn)-Total			101.2		%		70-130	16-MAR-21
Zirconium (Zr)-Total			101.0		%		70-130	16-MAR-21
NP,NPE-LCMS-WT	Water				X			
Batch R5403088	Water							
WG3502812-3 DUP		L2566189-1						
Nonylphenol		<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21
Nonylphenol Monoethox	ylates	<2.0	<2.0	RPD-NA	ug/L	N/A	30	17-MAR-21
Nonylphenol Diethoxylat	es	<0.10	<0.10	RPD-NA	ug/L	N/A	30	17-MAR-21
WG3502812-2 LCS								
Nonylphenol			87.4		%		75-125	17-MAR-21
Nonylphenol Monoethox			100.1		%		75-125	17-MAR-21
Nonylphenol Diethoxylat	es		107.0		%		75-125	17-MAR-21
WG3502812-1 MB Nonylphenol			<1.0		ug/L		1	17-MAR-21
Nonylphenol Monoethox	ylates		<2.0		ug/L		2	17-MAR-21
Nonylphenol Diethoxylat	es		<0.10		ug/L		0.1	17-MAR-21
WG3502812-4 MS		L2566189-1						
Nonylphenol			97.9		%		50-150	17-MAR-21
Nonylphenol Monoethox	ylates		109.9		%		50-150	17-MAR-21
Nonylphenol Diethoxylat	es		93.3		%		50-150	17-MAR-21
OCP-ROUTINE-WT	Water							
Batch R5402507								
WG3503474-2 LCS Aldrin			106.5		%		50-150	17-MAR-21
gamma-hexachlorocyclo	hexane		94.9		%		50-150	17-MAR-21
a-chlordane			98.3		%		50-150	17-MAR-21
g-chlordane			97.3		%		50-150	17-MAR-21
alpha-BHC			98.1		%		50-150	17-MAR-21
,								· · · · · · · · · · · · · · · · · · ·

Workorder: L2566855 Report Date: 15-APR-21 Page 9 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
OCP-ROUTINE-WT	Water							
Batch R5402507								
WG3503474-2 LCS			70.0		0/			
beta-BHC delta-BHC			73.0		%		50-150	17-MAR-21
			88.3				50-150	17-MAR-21
o,p-DDD			100.2		%		50-150	17-MAR-21
pp-DDD			115.6		%		50-150	17-MAR-21
o,p-DDE			90.3		%		50-150	17-MAR-21
pp-DDE			99.9		%		50-150	17-MAR-21
op-DDT			72.5		%		50-150	17-MAR-21
pp-DDT			60.9		%		50-150	17-MAR-21
Dieldrin			113.0		%		50-150	17-MAR-21
Endosulfan I			90.2		%		50-150	17-MAR-21
Endosulfan II			91.2		%		50-150	17-MAR-21
Endosulfan Sulfate			128.1		%		50-150	17-MAR-21
Endrin			55.0		%		50-150	17-MAR-21
Endrin Aldehyde			125.3		%		50-150	17-MAR-21
Heptachlor			78.0		%		50-150	17-MAR-21
Heptachlor Epoxide			96.3		%		50-150	17-MAR-21
Hexachlorobenzene			91.7		%		50-150	17-MAR-21
Hexachlorobutadiene			84.0		%		50-150	17-MAR-21
Hexachloroethane			90.6		%		50-150	17-MAR-21
Methoxychlor			70.3		%		50-150	17-MAR-21
Mirex		•	143.2		%		50-150	17-MAR-21
Oxychlordane			99.9		%		50-150	17-MAR-21
Pentachloronitrobenzene			93.0		%		50-150	17-MAR-21
trans-Nonachlor			99.1		%		50-150	17-MAR-21
WG3503474-1 MB								
Aldrin			<0.0080		ug/L		0.008	17-MAR-21
gamma-hexachlorocycloh	exane		<0.0080		ug/L		0.008	17-MAR-21
a-chlordane			<0.0080		ug/L		0.008	17-MAR-21
g-chlordane			<0.0080		ug/L		0.008	17-MAR-21
alpha-BHC			<0.0080		ug/L		0.008	17-MAR-21
beta-BHC			<0.0080		ug/L		0.008	17-MAR-21
delta-BHC			<0.0080		ug/L		0.008	17-MAR-21
o,p-DDD			<0.0040		ug/L		0.004	17-MAR-21
pp-DDD			<0.0040		ug/L		0.004	17-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 10 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
OCP-ROUTINE-WT	Water							
Batch R5402507								
WG3503474-1 MB			0.0040		//		0.004	
o,p-DDE			<0.0040		ug/L		0.004	17-MAR-21
pp-DDE			<0.0040		ug/L		0.004	17-MAR-21
op-DDT			<0.0040		ug/L		0.004	17-MAR-21
pp-DDT			<0.0040		ug/L		0.004	17-MAR-21
Dieldrin			<0.0080		ug/L		0.008	17-MAR-21
Endosulfan I			<0.0070		ug/L		0.007	17-MAR-21
Endosulfan II			<0.0070		ug/L		0.007	17-MAR-21
Endosulfan Sulfate			<0.0070	· ·	ug/L		0.007	17-MAR-21
Endrin			<0.010		ug/L		0.01	17-MAR-21
Endrin Aldehyde			<0.010		ug/L		0.01	17-MAR-21
Heptachlor			<0.0080		ug/L		0.008	17-MAR-21
Heptachlor Epoxide			<0.0080	V	ug/L		0.008	17-MAR-21
Hexachlorobenzene			<0.0080		ug/L		0.008	17-MAR-21
Hexachlorobutadiene			<0.0080		ug/L		0.008	17-MAR-21
Hexachloroethane			<0.0080		ug/L		0.008	17-MAR-21
Methoxychlor			<0.0080		ug/L		0.008	17-MAR-21
Mirex			<0.0080		ug/L		0.008	17-MAR-21
Oxychlordane			<0.0080		ug/L		0.008	17-MAR-21
Pentachloronitrobenzer	ne		<0.010		ug/L		0.01	17-MAR-21
trans-Nonachlor			<0.010		ug/L		0.01	17-MAR-21
Surrogate: Decachlorob	piphenyl	•	125.6		%		40-130	17-MAR-21
Surrogate: Tetrachloro-	m-xylene		88.8		%		40-130	17-MAR-21
Batch R5404187								
WG3503068-2 LCS								
Aldrin			111.5		%		50-150	19-MAR-21
gamma-hexachlorocycl	ohexane		103.8		%		50-150	19-MAR-21
a-chlordane			114.4		%		50-150	19-MAR-21
g-chlordane			117.0		%		50-150	19-MAR-21
alpha-BHC			105.8		%		50-150	19-MAR-21
beta-BHC			89.5		%		50-150	19-MAR-21
delta-BHC			101.1		%		50-150	19-MAR-21
o,p-DDD			113.2		%		50-150	19-MAR-21
pp-DDD			122.4		%		50-150	19-MAR-21
o,p-DDE			106.5		%		50-150	19-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 11 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test N	Matrix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
OCP-ROUTINE-WT V	Water						
Batch R5404187							
WG3503068-2 LCS							
pp-DDE		117.9		%		50-150	19-MAR-21
op-DDT		118.6		%		50-150	19-MAR-21
pp-DDT		100.2		%		50-150	19-MAR-21
Dieldrin		129.5		%		50-150	19-MAR-21
Endosulfan I		102.2		%		50-150	19-MAR-21
Endosulfan II		102.1		%		50-150	19-MAR-21
Endosulfan Sulfate		135.8		%		50-150	19-MAR-21
Endrin		39.0	RRQC	%		50-150	19-MAR-21
Endrin Aldehyde		139.1		%		50-150	19-MAR-21
Heptachlor		93.2		%		50-150	19-MAR-21
Heptachlor Epoxide		117.7		%		50-150	19-MAR-21
Hexachlorobenzene		96.4		%		50-150	19-MAR-21
Hexachlorobutadiene		89.8		%		50-150	19-MAR-21
Hexachloroethane		94.9		%		50-150	19-MAR-21
Methoxychlor		92.7		%		50-150	19-MAR-21
Mirex		148.1		%		50-150	19-MAR-21
Oxychlordane		115.5		%		50-150	19-MAR-21
Pentachloronitrobenzene		99.1		%		50-150	19-MAR-21
trans-Nonachlor		103.4		%		50-150	19-MAR-21
COMMENTS: RRQC: A	Analyte recovery in LCS wa	s below ALS DO	QO. Detection lin	nit raised and ass	ociated sample da	ata has been	qualified.
WG3503068-1 MB					•		•
Aldrin		<0.0080		ug/L		0.008	19-MAR-21
gamma-hexachlorocyclohe	exane	<0.0080		ug/L		0.008	19-MAR-21
a-chlordane		<0.0080		ug/L		0.008	19-MAR-21
g-chlordane		<0.0080		ug/L		0.008	19-MAR-21
alpha-BHC		<0.0080		ug/L		0.008	19-MAR-21
beta-BHC		<0.0080		ug/L		0.008	19-MAR-21
delta-BHC		<0.0080		ug/L		0.008	19-MAR-21
o,p-DDD		<0.0040		ug/L		0.004	19-MAR-21
pp-DDD		<0.0040		ug/L		0.004	19-MAR-21
o,p-DDE		<0.0040		ug/L		0.004	19-MAR-21
pp-DDE		<0.0040		ug/L		0.004	19-MAR-21
op-DDT		<0.0040		ug/L		0.004	19-MAR-21
pp-DDT		< 0.0040		ug/L		0.004	19-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 12 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
OCP-ROUTINE-WT	Water							
Batch R5404187 WG3503068-1 MB Dieldrin			<0.0080		ug/L		0.008	19-MAR-21
Endosulfan I			<0.0070		ug/L		0.007	19-MAR-21
Endosulfan II			<0.0070		ug/L		0.007	19-MAR-21
Endosulfan Sulfate			<0.0070		ug/L		0.007	19-MAR-21
Endrin			<0.010		ug/L		0.01	19-MAR-21
Endrin Aldehyde			<0.010		ug/L		0.01	19-MAR-21
Heptachlor			<0.0080		ug/L		0.008	19-MAR-21
Heptachlor Epoxide			<0.0080		ug/L		0.008	19-MAR-21
Hexachlorobenzene			<0.0080		ug/L		0.008	19-MAR-21
Hexachlorobutadiene			<0.0080		ug/L		0.008	19-MAR-21
Hexachloroethane			<0.0080		ug/L		0.008	19-MAR-21
Methoxychlor			<0.0080		ug/L		0.008	19-MAR-21
Mirex			<0.0080		ug/L		0.008	19-MAR-21
Oxychlordane			<0.0080		ug/L		0.008	19-MAR-21
Pentachloronitrobenzen	ie		<0.010		ug/L		0.01	19-MAR-21
trans-Nonachlor			<0.010		ug/L		0.01	19-MAR-21
Surrogate: Decachlorob	piphenyl		128.1		%		40-130	19-MAR-21
Surrogate: Tetrachloro-			95.7	*	%		40-130	19-MAR-21
OGG-SPEC-WT	Water							
Batch R5403028								
WG3504176-2 LCS Oil and Grease, Total			95.4		%		70-130	18-MAR-21
Mineral Oil and Grease			93.4		%		70-130	18-MAR-21
WG3504176-1 MB			33. <u>Z</u>		70		70-130	10-IVIAR-21
Oil and Grease, Total			<5.0		mg/L		5	18-MAR-21
Mineral Oil and Grease			<2.5		mg/L		2.5	18-MAR-21
P-T-COL-WT	Water							
Batch R5407361								
WG3505159-3 DUP Phosphorus, Total		L2567022-1 0.0316	0.0319		mg/L	1.2	20	22-MAR-21
WG3505159-2 LCS Phosphorus, Total			98.0		%		80-120	22-MAR-21
WG3505159-1 MB Phosphorus, Total			<0.0030		mg/L		0.003	22-MAR-21
WG3505159-4 MS		L2567022-1						

Workorder: L2566855 Report Date: 15-APR-21 Page 13 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
P-T-COL-WT	Water							
Batch R5407361 WG3505159-4 MS Phosphorus, Total		L2567022-1	92.3		%		70-130	22-MAR-21
PAH-511-WT	Water							
Batch R5401918								
WG3502652-2 LCS 1-Methylnaphthalene			105.0		%		50-140	16-MAR-21
2-Methylnaphthalene			98.7		%		50-140	16-MAR-21
Acenaphthene			104.6		%	*	50-140	16-MAR-21
Acenaphthylene			99.3		%		50-140	16-MAR-21
Anthracene			102.1		%		50-140	16-MAR-21
Benzo(a)anthracene			80.4		%		50-140	16-MAR-21
Benzo(a)pyrene			91.5		%		50-140	16-MAR-21
Benzo(b&j)fluoranthene			87.9		%		50-140	16-MAR-21
Benzo(g,h,i)perylene			124.5		%		50-140	16-MAR-21
Benzo(k)fluoranthene			90.4	Y	%		50-140	16-MAR-21
Chrysene			107.0		%		50-140	16-MAR-21
Dibenz(a,h)anthracene			104.1		%		50-140	16-MAR-21
Fluoranthene			102.9		%		50-140	16-MAR-21
Fluorene			104.4		%		50-140	16-MAR-21
Indeno(1,2,3-cd)pyrene			106.6		%		50-140	16-MAR-21
Naphthalene			101.9		%		50-140	16-MAR-21
Phenanthrene			104.3		%		50-140	16-MAR-21
Pyrene			104.1		%		50-140	16-MAR-21
WG3502652-1 MB 1-Methylnaphthalene			<0.020		ug/L		0.02	16 MAD 24
2-Methylnaphthalene			<0.020		•		0.02	16-MAR-21
Acenaphthene			<0.020		ug/L ug/L		0.02	16-MAR-21
Acenaphthylene			<0.020		ug/L		0.02	16-MAR-21
Anthracene			<0.020		ug/L		0.02	16-MAR-21
Benzo(a)anthracene			<0.020		ug/L ug/L		0.02	16-MAR-21
Benzo(a)pyrene			<0.020		ug/L ug/L		0.02	16-MAR-21
Benzo(b&j)fluoranthene			<0.010		ug/L		0.01	16-MAR-21
Benzo(g,h,i)perylene			<0.020		ug/L		0.02	16-MAR-21 16-MAR-21
Benzo(k)fluoranthene			<0.020				0.02	
Denzo(k)nuoraninene			<0.020		ug/L		0.02	16-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 14 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Matrix Reference Result Qualifier Units		Units	RPD	Limit	Analyzed	
PAH-511-WT	Water							
Batch R54	01918							
WG3502652-1 Chrysene	МВ	<	:0.020		ug/L		0.02	16-MAR-21
Dibenz(a,h)anthra	acene	<	:0.020		ug/L		0.02	16-MAR-21
Fluoranthene		<	:0.020		ug/L		0.02	16-MAR-21
Fluorene		<	:0.020		ug/L		0.02	16-MAR-21
Indeno(1,2,3-cd)p	oyrene	<	:0.020		ug/L		0.02	16-MAR-21
Naphthalene		<	:0.050		ug/L		0.05	16-MAR-21
Phenanthrene		<	:0.020		ug/L		0.02	16-MAR-21
Pyrene		<	:0.020		ug/L		0.02	16-MAR-21
Surrogate: Napht	thalene d8	9	8.2		%		60-140	16-MAR-21
Surrogate: Phena	anthrene d10	9	4.3		%		60-140	16-MAR-21
Surrogate: Chrys	ene d12	8	0.3		%		50-150	16-MAR-21
PCB-WT	Water							
	02911							
WG3503068-2 Aroclor 1242	LCS		3.4		%		05.400	40 MAD 04
Aroclor 1248			7.9		%		65-130 65-130	18-MAR-21
Aroclor 1254			3.8		%		65-130	18-MAR-21
Aroclor 1260			8.4		%		65-130	18-MAR-21 18-MAR-21
	МВ		0.4		70		00-130	10-WAK-21
Aroclor 1242	IVID		:0.020		ug/L		0.02	18-MAR-21
Aroclor 1248			:0.020		ug/L		0.02	18-MAR-21
Aroclor 1254		<	:0.020		ug/L		0.02	18-MAR-21
Aroclor 1260		<	:0.020		ug/L		0.02	18-MAR-21
Surrogate: Decad	chlorobiphenyl	1	12.8		%		50-150	18-MAR-21
Surrogate: Tetrac	chloro-m-xylene	1	04.1		%		50-150	18-MAR-21
Batch R54	03059							
WG3503474-2 Aroclor 1242	LCS	4	00 5		%		CE 400	40 MAD 04
Aroclor 1248			08.5 5.7		%		65-130 65-130	18-MAR-21
Aroclor 1254			18.5		%		65-130	18-MAR-21
Aroclor 1260			17.4		%		65-130 65-130	18-MAR-21
	MP	,	17.4		/0		00-130	18-MAR-21
Aroclor 1242	MB	<	:0.020		ug/L		0.02	18-MAR-21
Aroclor 1248		<	:0.020		ug/L		0.02	18-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 15 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PCB-WT	Water							
Batch R5403059 WG3503474-1 MB Aroclor 1254			<0.020		ug/L		0.02	18-MAR-21
Aroclor 1260			<0.020		ug/L		0.02	18-MAR-21
Surrogate: Decachlorobi	phenyl		122.0		%		50-150	18-MAR-21
Surrogate: Tetrachloro-n	n-xylene		97.8		%		50-150	18-MAR-21
PH-WT	Water							
Batch R5401759								
WG3502803-4 DUP pH		WG3502803-3 8.22	8.26	J	pH units	0.04	0.2	16-MAR-21
WG3502803-2 LCS pH			7.00		pH units		6.9-7.1	16-MAR-21
PHENOLS-4AAP-WT	Water							
Batch R5405037								
WG3504785-3 DUP Phenols (4AAP)		L2566739-1 <0.0010	<0.0010	RPD-NA	mg/L	N/A	20	19-MAR-21
WG3504785-2 LCS Phenols (4AAP)			85.7		%		85-115	19-MAR-21
WG3504785-1 MB Phenols (4AAP)			<0.0010		mg/L		0.001	19-MAR-21
WG3504785-4 MS Phenols (4AAP)		L2566739-1	84.8		%		75-125	19-MAR-21
SOLIDS-TSS-WT	Water							
Batch R5408260								
WG3505171-3 DUP Total Suspended Solids		L2566855-1 140	163		mg/L	15	20	20-MAR-21
WG3505171-2 LCS Total Suspended Solids			103.5		%		85-115	20-MAR-21
WG3505171-1 MB Total Suspended Solids			<3.0		mg/L		3	20-MAR-21
TKN-F-WT	Water							
Batch R5404670 WG3504748-3 DUP Total Kjeldahl Nitrogen		L2566781-2 3.97	4.13		mg/L	4.0	20	40 MAD 24
WG3504804-3 DUP Total Kjeldahl Nitrogen		L2567022-1 0.520	0.530		mg/L	1.9	20	19-MAR-21 19-MAR-21
WG3504748-2 LCS Total Kjeldahl Nitrogen		.	99.8		%		75-125	19-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 16 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	ence Result Qualifier Units		Units	RPD	Limit	Analyzed
TKN-F-WT	Water							
Batch R5404670 WG3504804-2 LCS Total Kjeldahl Nitrogen			100.5		%		75-125	19-MAR-21
WG3504748-1 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	19-MAR-21
WG3504804-1 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	19-MAR-21
WG3504748-4 MS Total Kjeldahl Nitrogen		L2566781-2	99.2		%		70-130	19-MAR-21
WG3504804-4 MS Total Kjeldahl Nitrogen		L2567022-1	105.0		%	•	70-130	19-MAR-21
VOC-ROU-HS-WT	Water							
Batch R5402257								
WG3503430-4 DUP 1,1,1,2-Tetrachloroethan	ne	WG3503430-3 < 0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
1,1,2,2-Tetrachloroethan		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-WAR-21 17-MAR-21
1,1,1-Trichloroethane		0.61	0.63	2	ug/L	3.2	30	17-MAR-21
1,1,2-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
1,2-Dibromoethane		<0.20	<0.20	RPD-NA	ug/L	N/A	30	17-MAR-21
1,1-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
1,1-Dichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
1,2-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAR-21
1,2-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
1,2-Dichloropropane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
1,3-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAR-21
1,4-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAR-21
2-Hexanone		<20	<20	RPD-NA	ug/L	N/A	30	17-MAR-21
Acetone		<20	<20	RPD-NA	ug/L	N/A	30	17-MAR-21
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
Bromodichloromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21
Bromoform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21
Bromomethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
Carbon Disulfide		<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21
Carbon tetrachloride		<0.20	<0.20	RPD-NA	ug/L	N/A	30	17-MAR-21
Chlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
Chloroethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 17 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Note	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Chloroform	VOC-ROU-HS-WT	Water							
Chloroform	Batch R5402257								
Chloromethane									
cis-1,2-Dichloroethylene <0.50 <0.50 RPD-NA ug/L N/A 30 17-MAR-21 cis-1,3-Dichloropropene <0.30									
cis-1,3-Dichloropropene <0.30 <0.30 RPD-NA Ug/L N/A 30 17-MAR-21 Dibromochloromethane <1.0									
Dibriomochloromethane								30	
Dichlorodifluoromethane	• • •				RPD-NA		N/A	30	17-MAR-21
Dichloromethane				<1.0	RPD-NA		N/A	30	17-MAR-21
Ethylbenzene <0.50 <0.50 RPD-NA ug/L N/A 30 17-MAR-21 m+p-Xylenes <0.40	Dichlorodifluoromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21
m+p-Xylenes <0.40 <0.40 RPD-NA ug/L N/A 30 17-MAR-21 Methyl Ethyl Ketone <20	Dichloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	17-MAR-21
Methyl Ethyl Ketone <20 <20 RPD-NA ug/L N/A 30 17-MAR-21 Methyl Isobutyl Ketone <20	Ethylbenzene		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
Methyl Isobutyl Ketone <20 <20 RPD-NA ug/L N/A 30 17-MAR-21 n-Hexane <0.50	m+p-Xylenes		<0.40	< 0.40	RPD-NA	ug/L	N/A	30	17-MAR-21
n-Hexane <0.50 <0.50 RPD-NA ug/L N/A 30 17-MAR-21 MTBE <0.50	Methyl Ethyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	17-MAR-21
MTBE <0.50 <0.50 RPD-NA ug/L N/A 30 17-MAR-21 o-Xylene <0.30	Methyl Isobutyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	17-MAR-21
o-Xylene	n-Hexane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
Styrene <0.50 <0.50 RPD-NA ug/L N/A 30 17-MAR-21 Tetrachloroethylene <0.60	MTBE		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
Tetrachloroethylene <0.50 <0.50 RPD-NA ug/L N/A 30 17-MAR-21 Toluene <0.40	o-Xylene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	17-MAR-21
Toluene <0.40 <0.40 RPD-NA ug/L N/A 30 17-MAR-21 trans-1,2-Dichloroethylene <0.50	Styrene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
trans-1,2-Dichloroethylene	Tetrachloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
trans-1,3-Dichloropropene <0.30 <0.30 RPD-NA ug/L N/A 30 17-MAR-21 Trichloroethylene 1.27 1.33 ug/L 4.6 30 17-MAR-21 Trichlorofluoromethane <1.0	Toluene		<0.40	<0.40	RPD-NA	ug/L	N/A	30	17-MAR-21
Trichloroethylene 1.27 1.33 ug/L 4.6 30 17-MAR-21 Trichlorofluoromethane <1.0	trans-1,2-Dichloroethyler	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
Trichlorofluoromethane <1.0 <1.0 RPD-NA ug/L N/A 30 17-MAR-21 Vinyl chloride <0.50 <0.50 RPD-NA ug/L N/A 30 17-MAR-21 WG3503430-1 LCS LCS 1,1,1,2-Tetrachloroethane 94.4 % 70-130 17-MAR-21 1,1,2,2-Tetrachloroethane 106.1 % 70-130 17-MAR-21 1,1,1-Trichloroethane 109.2 % 70-130 17-MAR-21 1,1,2-Trichloroethane 89.9 % 70-130 17-MAR-21 1,2-Dibromoethane 84.9 % 70-130 17-MAR-21 1,1-Dichloroethane 105.7 % 70-130 17-MAR-21 1,2-Dichloroethylene 112.7 % 70-130 17-MAR-21 1,2-Dichloroethane 102.4 % 70-130 17-MAR-21 1,2-Dichloroethane 103.4 % 70-130 17-MAR-21 1,2-Dichloroethane 103.4 % 70-130 17-MAR-21	trans-1,3-Dichloroproper	ne	<0.30	<0.30	RPD-NA	ug/L	N/A	30	17-MAR-21
Vinyl chloride <0.50 <0.50 RPD-NA ug/L N/A 30 17-MAR-21 WG3503430-1 LCS LCS 1,1,1,2-Tetrachloroethane 94.4 % 70-130 17-MAR-21 1,1,2,2-Tetrachloroethane 106.1 % 70-130 17-MAR-21 1,1,1-Trichloroethane 109.2 % 70-130 17-MAR-21 1,2-Trichloroethane 89.9 % 70-130 17-MAR-21 1,2-Dibromoethane 84.9 % 70-130 17-MAR-21 1,1-Dichloroethane 105.7 % 70-130 17-MAR-21 1,1-Dichloroethylene 112.7 % 70-130 17-MAR-21 1,2-Dichlorobenzene 102.4 % 70-130 17-MAR-21 1,2-Dichloroethane 103.4 % 70-130 17-MAR-21	Trichloroethylene		1.27	1.33		ug/L	4.6	30	17-MAR-21
WG3503430-1 LCS 1,1,1,2-Tetrachloroethane 94.4 % 70-130 17-MAR-21 1,1,2,2-Tetrachloroethane 106.1 % 70-130 17-MAR-21 1,1,1-Trichloroethane 109.2 % 70-130 17-MAR-21 1,1,2-Trichloroethane 89.9 % 70-130 17-MAR-21 1,2-Dibromoethane 84.9 % 70-130 17-MAR-21 1,1-Dichloroethane 105.7 % 70-130 17-MAR-21 1,1-Dichloroethylene 112.7 % 70-130 17-MAR-21 1,2-Dichlorobenzene 102.4 % 70-130 17-MAR-21 1,2-Dichloroethane 103.4 % 70-130 17-MAR-21	Trichlorofluoromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAR-21
1,1,1,2-Tetrachloroethane 94.4 % 70-130 17-MAR-21 1,1,2,2-Tetrachloroethane 106.1 % 70-130 17-MAR-21 1,1,1-Trichloroethane 109.2 % 70-130 17-MAR-21 1,1,2-Trichloroethane 89.9 % 70-130 17-MAR-21 1,2-Dibromoethane 84.9 % 70-130 17-MAR-21 1,1-Dichloroethane 105.7 % 70-130 17-MAR-21 1,1-Dichloroethylene 112.7 % 70-130 17-MAR-21 1,2-Dichlorobenzene 102.4 % 70-130 17-MAR-21 1,2-Dichloroethane 103.4 % 70-130 17-MAR-21	Vinyl chloride		<0.50	<0.50	RPD-NA	ug/L	N/A	30	17-MAR-21
1,1,2,2-Tetrachloroethane 106.1 % 70-130 17-MAR-21 1,1,1-Trichloroethane 109.2 % 70-130 17-MAR-21 1,1,2-Trichloroethane 89.9 % 70-130 17-MAR-21 1,2-Dibromoethane 84.9 % 70-130 17-MAR-21 1,1-Dichloroethane 105.7 % 70-130 17-MAR-21 1,1-Dichloroethylene 112.7 % 70-130 17-MAR-21 1,2-Dichlorobenzene 102.4 % 70-130 17-MAR-21 1,2-Dichloroethane 103.4 % 70-130 17-MAR-21									
1,1,1-Trichloroethane 109.2 % 70-130 17-MAR-21 1,1,2-Trichloroethane 89.9 % 70-130 17-MAR-21 1,2-Dibromoethane 84.9 % 70-130 17-MAR-21 1,1-Dichloroethane 105.7 % 70-130 17-MAR-21 1,1-Dichloroethylene 112.7 % 70-130 17-MAR-21 1,2-Dichlorobenzene 102.4 % 70-130 17-MAR-21 1,2-Dichloroethane 103.4 % 70-130 17-MAR-21									
1,1,2-Trichloroethane 89.9 % 70-130 17-MAR-21 1,2-Dibromoethane 84.9 % 70-130 17-MAR-21 1,1-Dichloroethane 105.7 % 70-130 17-MAR-21 1,1-Dichloroethylene 112.7 % 70-130 17-MAR-21 1,2-Dichlorobenzene 102.4 % 70-130 17-MAR-21 1,2-Dichloroethane 103.4 % 70-130 17-MAR-21		ie							
1,2-Dibromoethane 84.9 % 70-130 17-MAR-21 1,1-Dichloroethane 105.7 % 70-130 17-MAR-21 1,1-Dichloroethylene 112.7 % 70-130 17-MAR-21 1,2-Dichlorobenzene 102.4 % 70-130 17-MAR-21 1,2-Dichloroethane 103.4 % 70-130 17-MAR-21									
1,1-Dichloroethane 105.7 % 70-130 17-MAR-21 1,1-Dichloroethylene 112.7 % 70-130 17-MAR-21 1,2-Dichlorobenzene 102.4 % 70-130 17-MAR-21 1,2-Dichloroethane 103.4 % 70-130 17-MAR-21									
1,1-Dichloroethylene 112.7 % 70-130 17-MAR-21 1,2-Dichlorobenzene 102.4 % 70-130 17-MAR-21 1,2-Dichloroethane 103.4 % 70-130 17-MAR-21	·								
1,2-Dichlorobenzene 102.4 % 70-130 17-MAR-21 1,2-Dichloroethane 103.4 % 70-130 17-MAR-21	,								
1,2-Dichloroethane 103.4 % 70-130 17-MAR-21	-								17-MAR-21
	•							70-130	17-MAR-21
1,2-Dichloropropane 100.2 % 70-130 17-MAR-21	•							70-130	17-MAR-21
	1,2-Dichloropropane			100.2		%		70-130	17-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 18 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R5402257	•							
WG3503430-1 LCS								
1,3-Dichlorobenzene			105.7		%		70-130	17-MAR-21
1,4-Dichlorobenzene			108.8		%		70-130	17-MAR-21
2-Hexanone			73.9		%		60-140	17-MAR-21
Acetone			103.3		%		60-140	17-MAR-21
Benzene			100.3		%		70-130	17-MAR-21
Bromodichloromethane)		111.9		%		70-130	17-MAR-21
Bromoform			91.5		%		70-130	17-MAR-21
Bromomethane			100.8	· ·	%		60-140	17-MAR-21
Carbon Disulfide			105.6		%		70-130	17-MAR-21
Carbon tetrachloride			115.9		%		70-130	17-MAR-21
Chlorobenzene			98.2		%		70-130	17-MAR-21
Chloroethane			117.6	V	%		70-130	17-MAR-21
Chloroform			110.5		%		70-130	17-MAR-21
Chloromethane			101.8		%		60-140	17-MAR-21
cis-1,2-Dichloroethylen	е		104.2		%		70-130	17-MAR-21
cis-1,3-Dichloropropend	е		100.8		%		70-130	17-MAR-21
Dibromochloromethane)		84.9		%		70-130	17-MAR-21
Dichlorodifluoromethan	е		90.2		%		50-140	17-MAR-21
Dichloromethane			120.0		%		70-130	17-MAR-21
Ethylbenzene			95.3		%		70-130	17-MAR-21
m+p-Xylenes			99.7		%		70-130	17-MAR-21
Methyl Ethyl Ketone			88.0		%		60-140	17-MAR-21
Methyl Isobutyl Ketone			84.0		%		50-150	17-MAR-21
n-Hexane			104.7		%		70-130	17-MAR-21
MTBE			103.2		%		70-130	17-MAR-21
o-Xylene			101.5		%		70-130	17-MAR-21
Styrene			88.4		%		70-130	17-MAR-21
Tetrachloroethylene			98.4		%		70-130	17-MAR-21
Toluene			95.3		%		70-130	17-MAR-21
trans-1,2-Dichloroethyle	ene		123.9		%		70-130	17-MAR-21
trans-1,3-Dichloroprope	ene		93.9		%		70-130	17-MAR-21
Trichloroethylene			105.3		%		70-130	17-MAR-21
Trichlorofluoromethane	•		114.1		%		60-140	17-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 19 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R5402	257							
WG3503430-1 LC Vinyl chloride	CS .		107.8		%		60-140	17-MAR-21
WG3503430-2 MI 1,1,1,2-Tetrachloroe			<0.50		ug/L		0.5	17-MAR-21
1,1,2,2-Tetrachloroe	ethane		<0.50		ug/L		0.5	17-MAR-21
1,1,1-Trichloroethar	ne		<0.50		ug/L		0.5	17-MAR-21
1,1,2-Trichloroethar	ne		<0.50		ug/L		0.5	17-MAR-21
1,2-Dibromoethane			<0.20		ug/L		0.2	17-MAR-21
1,1-Dichloroethane			<0.50		ug/L		0.5	17-MAR-21
1,1-Dichloroethylen	е		<0.50		ug/L		0.5	17-MAR-21
1,2-Dichlorobenzen	е		<0.50		ug/L		0.5	17-MAR-21
1,2-Dichloroethane			<0.50		ug/L		0.5	17-MAR-21
1,2-Dichloropropane	Э		<0.50		ug/L		0.5	17-MAR-21
1,3-Dichlorobenzen	e		<0.50		ug/L		0.5	17-MAR-21
1,4-Dichlorobenzen	е		<0.50		ug/L		0.5	17-MAR-21
2-Hexanone			<20		ug/L		20	17-MAR-21
Acetone			<20		ug/L		20	17-MAR-21
Benzene			<0.50		ug/L		0.5	17-MAR-21
Bromodichlorometh	ane		<1.0	Ť	ug/L		1	17-MAR-21
Bromoform			<1.0		ug/L		1	17-MAR-21
Bromomethane			<0.50		ug/L		0.5	17-MAR-21
Carbon Disulfide			<1.0		ug/L		1	17-MAR-21
Carbon tetrachloride	Э		<0.20		ug/L		0.2	17-MAR-21
Chlorobenzene			< 0.50		ug/L		0.5	17-MAR-21
Chloroethane			<1.0		ug/L		1	17-MAR-21
Chloroform			<1.0		ug/L		1	17-MAR-21
Chloromethane			<1.0		ug/L		1	17-MAR-21
cis-1,2-Dichloroethy	vlene		<0.50		ug/L		0.5	17-MAR-21
cis-1,3-Dichloroprop	oene		< 0.30		ug/L		0.3	17-MAR-21
Dibromochlorometh	ane		<1.0		ug/L		1	17-MAR-21
Dichlorodifluoromet	hane		<1.0		ug/L		1	17-MAR-21
Dichloromethane			<2.0		ug/L		2	17-MAR-21
Ethylbenzene			<0.50		ug/L		0.5	17-MAR-21
m+p-Xylenes			<0.40		ug/L		0.4	17-MAR-21
Methyl Ethyl Ketone	•		<20		ug/L		20	17-MAR-21

Workorder: L2566855 Report Date: 15-APR-21 Page 20 of 22

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R540225	7							
WG3503430-2 MB								
Methyl Isobutyl Ketone	•		<20		ug/L		20	17-MAR-21
n-Hexane			<0.50		ug/L		0.5	17-MAR-21
MTBE			< 0.50		ug/L		0.5	17-MAR-21
o-Xylene			<0.30		ug/L		0.3	17-MAR-21
Styrene			< 0.50		ug/L		0.5	17-MAR-21
Tetrachloroethylene			<0.50		ug/L		0.5	17-MAR-21
Toluene			<0.40		ug/L		0.4	17-MAR-21
trans-1,2-Dichloroethy	lene		<0.50		ug/L		0.5	17-MAR-21
trans-1,3-Dichloroprop	ene		< 0.30		ug/L		0.3	17-MAR-21
Trichloroethylene			<0.50		ug/L		0.5	17-MAR-21
Trichlorofluoromethan	е		<1.0		ug/L		1	17-MAR-21
Vinyl chloride			<0.50		ug/L		0.5	17-MAR-21
Surrogate: 1,4-Difluoro	benzene		100.0		%		70-130	17-MAR-21
Surrogate: 4-Bromoflu	orobenzene		88.3		%		70-130	17-MAR-21

Workorder: L2566855 Report Date: 15-APR-21

Client: Thurber Engineering Ltd. (Oakville)
2010 Winston Park Drive Unit 103
Page 21 of 22

Oakville ON L6H 5R7

Contact: Rachel Bourassa

Legend:

Limit	imit ALS Control Limit (Data Quality Objectives)	
DUP	UP Duplicate	
RPD	PD Relative Percent Difference	
N/A	/A Not Available	
LCS	CS Laboratory Control Sample	
SRM	RM Standard Reference Material	
MS	IS Matrix Spike	
MSD	ISD Matrix Spike Duplicate	
ADE	DE Average Desorption Efficiency	
MB	IB Method Blank	
IRM	RM Internal Reference Material	
CRM	RM Certified Reference Material	
CCV	CV Continuing Calibration Verification	
CVS	VS Calibration Verification Standard	
LCSD	CSD Laboratory Control Sample Duplicate	

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
RRQC	Refer to report remarks for information regarding this QC result.

Workorder: L2566855 Report Date: 15-APR-21

Client: Thurber Engineering Ltd. (Oakville)

2010 Winston Park Drive Unit 103

Oakville ON L6H 5R7

Contact: Rachel Bourassa

Page 22 of 22

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Bacteriological Tests							
E. Coli							
	1	12-MAR-21 14:00	16-MAR-21 11:05	48	93	hours	EHTR
	2	12-MAR-21 13:00	16-MAR-21 11:05	48	94	hours	EHTR

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2566855 were received on 15-MAR-21 15:30.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain

www.alsglobal.com

L2566855-COFC

COC Number: 20 -

Page ∖ of

Report To	Contact and company name below will app	pear on the final report	Reports / Recipients					Turnaround Time (TAT) Requested									·	—				
Company:	Thurber Engineering Ltd.		Select Report F	ormat: 🔽 PDF		OD (DIGITAL)	7 Pc	outine (D		_		1-F - no										
Contact:	Rachel Bourassa		1	Reports with COA			_								inia							
Phone:	905-829-8666			ılts to Criteria on Report			4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum 3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum								AFFIX ALS BARCODE LABEL HERE					ERE		
	Company address below will appear on the fir	nal report	Select Distributi	_	MAIL			2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum								(ALS use only)						
Street:	2010 Winston Park Drive, Suite 103		Email 1 or Fax	rbourassa@thurb	er.ca		L_ Sa	me day	(E) if received by 3pm M-F - 100% rush surcharge minimum day [E2] if received by 10am M-S - 200% rush surcharge. Additional nay apply to rush resuests on weekends, statutory holidays and non-													
City/Province:	Oakville, Ontario		Email 2					es may a utine tesi		rush re	esuests	on weeke	nds, statu	tory holic	lays an	d non-						,
Postal Code:	L6H 5R7		Email 3					Date and	and Time Required for all E&P TATs:													
Invoice To	Same as Report To	NO		Invoice Recipients					For tests that can not be performed according to the TAT requested, you will be contacted.													
	Copy of Invoice with Report YES	NO NO	Select Invoice D	Distribution: 🔽 E	MAIL MAIL	FAX							A	nalysis	Requ	ıest	*					
Company:	Thurber Engineering Ltd.		Email 1 or Fax	accountingON@th	nurber.ca		8		Ir	ndicate	Filtered	(F), Pres	erved (P)	or Filter	ed and	Preserv	ed (F/F) below		T	ĪΩ	8
Contact:			Email 2				CONTAINERS]	STORAGE REQUIRED	notes)
	Project Information			and Gas Require	, 	use)] 🗧		3			,								1_	글	<u> </u>
ALS Account #			AFE/Cost Center:		PO#] [4	J.			ES								ΙΞ	2)s
Job#: 307	+26		Major/Minor Code:		Routing Code:		١ <u>ة</u> [04/804	SSA			8	I≱							HOLD	8	윊
PO / AFE:			Requisitioner:	·				J.PO	Z\T	လ		₹	₽P			တု				S	I 🖔	Ŋ
LSD:			Location:				<u>ე</u> გ	ZNS	Ĭ	ETA		ZZ	Ş			METALS					딣] [
ALS Lab Wor	k Order # (lab use only):	66855	ALS Contact:	Amanda Overholster	Sampler:		BER	ALK/BR/CL/F/N2/N3/P	COLOUR/EC/PH/TDS/TSS/TURB	BAL/METALS	IP/NH3/TOC	SILICA/N2N3/HARDNESS	ON-SAN+STORM-NAP-WT			DISSOLVED ME				SAMPLES	EXTENDED	SUSPECTED HAZARD
ALS Sample #	Sample Identification	and/or Coordinates		Date	Time	Sample Type		/BR	9	HG/ION		ဗ	SAN			SOL		-		ĮΞ	🖆	g
(lab use only)	(This description will a	appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	Įź	ALK	Ö	HG/	TP/	CALC	Š		TSS	SIG			-	S	ă	ြင္တ
	BH06			12-Mar-21	14:00	GW	21	R	R	R	R	R	R		R	R ·				1	1	П
	BH04D			12-Mar-21	13:00	GW	21	R	R	R	R	R	R		R	R				T	†	
														—						1	t	Н
			-				1										_	_	+	1	†	
							1		\dashv				+	+			\rightarrow			+	 	\vdash
							 		\dashv		-+		+	 -			+	+		₩	ł	$\vdash\vdash$
							-		\dashv		\rightarrow	+	+	-	_		\dashv	_	_	╀	 	\vdash
							 	-		_		-	+	1				-		ــــــــــــــــــــــــــــــــــــــ	<u> </u>	↓
						ļ	ļ	<u> </u>		_		_								1_		Ш
		· · · · · · · · · · · · · · · · · · ·					<u> </u>															Ш
											1									1	1	
														1			一		_	1	t	\Box
Drinking	Water (DW) Samples ¹ (client use)	Notes / Specify L	imits for result e	valuation by selection	ng from drop-dow	n below	†	<u> </u>	<u>-</u>			AMPLI	RECE	IPT D	TAIL	S (lab	use	only)		Ь	<u>. </u>	щ
			(Ex	ccel COC only)			Cooli	ing Me	thod:		NONE		ΕX	ICE PACI	s [FRC	ZEN		COOLI	IG INIT	IATED	
· ·	en from a Regulated DW System?	PWQO, 1	Napanee	Storm	+ Sanita	~	Subn	nission	Com	ment	ident	fied on	Sample	Recei	pt Not	tification	on:	YE	s []NO		
	ES NO	•	•			1	Cook	er Cust	ody S	eals l	ntact:		YES [N/A	Samp	le Cu	stody	Seals I	ntact:	☐ YE	s 🗆	N/A
	human consumption/ use?							INI	TIAL C	OOLE	R TEMP	ERATUR	ES °C			FI	NAL C	OOLER 1	EMPERA	TURES	°C	
	ES 🗌 NO														2.	1	[14				
Released by:	SHIPMENT RELEASE (client use										FIN	AL SHI				ON (la		only)				
Rache	el Bourassa 3/15/2	Time: Received by: Date:				Time		Rece	ived t	oy:	X		Date	56	u				THE	21		
REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YE						Y COPY YELL	OW -	CLIENT	I COP	<u> </u>			N	13/	10	1_				111	20	000 F001/7

Table F1 - Dewatering Calculations for Unconfined Scenarios

	Parameter	Units	Multi-use building	Combined Excavation for Three AGS reactor tanks, post-equalization tank, and operation building	Single storey tertiary / ultraviolet disinfection building	Sanitary Pumping Station
	Relevant Boreholes		MW24-101, BH01, BH02	BH03, BH04, BH22,MW24-101	BH05, BH10	BH10
	Geologic Unit to Dewater		Silty clay	Silty clay, peat	Sand to silty sand, silty clay	Silty sand, Silty clay
	Input Hydraulic Conductivity in m/s (K)	m/s	5.5E-06	5.5E-06	5.5E-06	5.5E-06
	Hydraulic Conductivity converted to m/day	m/day	0.5	0.5	0.5	0.5
	Input static water level elevation	m	78.5	77.2	76.3	76.3
	Input excation elevation	m	76.0	74.9	74.4	72.7
	Input dewatering target elevation	m	75.0	73.9	73.4	71.7
	Input bottom of aquifer elevation	m	71.7	72.9	72.4	70.7
	Input height of groundwater pressure (H)	m	6.8	4.3	3.9	5.6
	Input dewatering height (h)	m	3.3	1.0	1.0	1.0
	Input length of excavation (x, a)	m	35	65	30	4
	Input width of excavation (b)	m	25	55	20	4
	Input/calculate radius of trench (rw or rs)	m	16.7	33.7	10.0	2.3
	Length to width ratio	unitless	1.4	1.2	1.5	1.0
	Net water table lowering	m	3.50	3.30	2.90	4.60
	Equation Type		Radial	Radial	Trench	Radial
	Apply reduction for partial aquifer penetration?	yes/no	no	no	no	no
Radii of Influence						
	Sichardt Equation (Ro based on K, H, h)	m	25	23	20	32
Calandata d Flans Batta	Ro = Sichardt + (rw or rs)	m	41	57	30	35
Calculated Flow Rate	Base groundwater flow	L/day	58,000	50,000	26,000	17,000
	Partial Penetration Factor		1.00	1.00	1.00	1.00
	Safety factor on groundwater flow	unitless	3	3	3	3
	Groundwater flow with safety factor	L/day	174,000	150,000	78,000	51,000
	Rainfall entering excavation	mm	50	50	50	50
	Duration to remove rainfall	hours	24	24	24	24
	Flow rate to remove rainfall	L/day	44,000	179,000	30,000	1,000
	Budgeted peak flow rate	L/day	218,000	329,000	108,000	52,000
	=	L/s	2.5	3.8	1.3	0.6
	=	gal/min	33	50	16	8

Table F2 -Dewatering Calculations for Unconfined Scenarios

	Parameter	Units	Utility Trench (e.g., Outfall Pipe)
	Relevant Boreholes		BH04, BH10, BH11, BH12, BH19
	Geologic Unit to Dewater		Sand to silty sand, silty clay
	Input Hydraulic Conductivity in m/s (K)	m/s	5.5E-06
	Hydraulic Conductivity converted to m/day	m/day	0.5
	Input static water level depth below grade	m	0.9
	Input excavation depth below grade	m	2.0
	Input dewatering target depth below grade	m	3.0
	Input bottom of aquifer depth below grade	m	4.0
	Input height of groundwater pressure (H)	m	3.1
	Input dewatering height (h)	m	1.0
	Input length of excavation (x, a)	m	55
	Input width of excavation (b)	m	2
	Input/calculate radius of trench (rw or rs)	m	1.0
	Length to width ratio	unitless	27.5
	Net water table lowering	m	2.10
	Equation Type		Trench
	Apply reduction for partial aquifer penetration?	yes/no	no
Radii of Influence			
	Sichardt Equation (Ro based on K, H, h)	m	15
	Ro = Sichardt + (rw or rs)	m	16
Calculated Flow Rate			
	Base groundwater flow	L/day	19,000
	Partial Penetration Factor	unitless	1.00
	Safety factor on groundwater flow	unitless	3
	Groundwater flow with safety factor	L/day	57,000
	Rainfall entering excavation	mm	50
	Duration to remove rainfall	hours	24
	Flow rate to remove rainfall	L/day	6,000
	Budgeted peak flow rate	L/day	63,000
	=	L/s	0.7
	Ξ	gal/min	10

Table F2 uses depths based on metres below grade. Flow rate estimates rounded to nearest 1,000 L/day.

F3 - Dewatering Calculations for Confined Scenarios

Parameter	Units	Influent Buffer Tanks	Sludge Buffer Tanks
Relevant boreholes		MW24-101, BH01, BH02	MW24-101, BH01, BH0
Geologic Unit to Dewater		Limestone Bedrock	Limestone Bedrock
Input Hydraulic Conductivity (K)	m/s	1.7E-05	1.7E-05
Hydraulic Conductivity converted to m/day	m/day	1.5E+00	1.5E+00
High Groundwater Level Elevation	m	78.5	78.5
Proposed Elevation Excavation Level	m	71.7	73.9
Input dewatering target elevation	m	71.2	72.9
Height of groundwater pressure (H)	m	10.8	10.8
Dewatering height (h)	m	3.5	5.2
Net depressurization	m	7.3	5.6
Input length of excavation (x, a)	m	20	20
Input width of excavation (b)	m	13	8
Elevation of top of extraction interval	m	70.7	70.7
Elevation of bottom of extraction interval	m	67.7	67.7
Elevation of bottom of aquifer	m	67.7	67.7
Vertical extraction interval thickness	m	3	3
Aquifer thickness	m	3	3
Length to width ratio a/b	unitless	1.5	2.5
Apply reduction for partial aquifer penetration?	yes/no	no	no
Equivalent radius Rs, where applicable	m	6.5	4.0
Radius of Influence (Ro based on Sichardt)	m	90	69
Ratio Ro/Rs		13.9	17.3
Flow equation based on a/b and Ro/Rs		Trench + Equiv. Well	Trench + Equiv. Well
Calculated Flow Rate			
Groundwater flow prior to factor reductions	L/day	91,000	69,000
Partial Penetration Factor	unitless	1.00	1.00
Base groundwater flow	L/day	91,000	69,000
Allowance for Bulk Excavation Drainage Base Flow	L/day	59,000	24,000
Safety factor on groundwater flow	unitless	3	3
Groundwater flow with safety factor	L/day	273,000	207,000
Rainfall entering excavation, if applicable	mm	50	50
Duration to remove rainfall	hours	24	24
Flow rate to remove rainfall	L/day	13,000	8,000
Allowance for Bulk Excavation Drainage Peak Flow	L/day	177,000	73,000
Budgeted peak flow rate	L/day	463,000	288,000
=	L/s	5.4	3.3
=	gal/min	71	44

Flow rate estimates rounded to nearest 1,000 L/day. Where Ro/Rs < 1.5, calculate flow as perimeter trenches.

Table F4 - Dewatering rates (L/day) based on the bulk excavation approach method

Project Element		Dimensions		Total Saturated Subsurface	Base Groundwater Flow	Peak Groundwater Flow
Project Element	Length (m)	Width (m)	Drainable Porosity %	Volume (m³)	(L/day) ¹	(L/day) ²
Influent Buffer Tanks	20	13	20	1,768	59,000	177,000
Sludge Buffer Tanks	20	8	20	728	24,000	73,000

Notes

- [1] Based on the assumption that it will take 6 days to excavate the satuarated soil material
- [2] Based on the assumption that it will take 2 days to excavate the satuarated soil material

Table F5 - Permanent Drainage Calculations for Unconfined Scenarios

Parameter	Units	Three AGS reactor tanks	Operation Building	Single storey tertiary / ultraviolet disinfection building
Relevant Borehole:	s	BH03, BH04, BH22,MW24-101	BH22	BH05, BH10
Geologic Unit to Dewate	r	Silty clay, peat	Silty clay, peat	Sand to silty sand, silty clay
Input Hydraulic Conductivity in m/s (K) m/s	1.2E-06	1.2E-06	1.2E-06
Hydraulic Conductivity converted to m/day	m/day	0.1	0.1	0.1
Input static water level elevation		77.2	77.2	76.3
Input dewatering target elevation	n m	76.0	75.9	75.3
Input bottom of aquifer elevation	n m	75.0	74.9	74.3
Input height of groundwater pressure (H) m	2.2	2.3	2.0
Input dewatering height (h) m	1.0	1.0	1.0
Input length of structure (x, a) m	55	39	27
Input width of structure (b) m	33	14	16
Input/calculate radius of structure (rw or rs) m	16.5	7.0	8.0
Length to width ratio	unitless	1.7	2.8	1.7
Net water table lowering	g m	1.21	1.31	1.02
Equation Type	9	Trench	Trench	Trench
Apply reduction for partial aquifer penetration?	? yes/no	no	no	no
Radii of Influence				
Sichardt Equation (Ro based on K, H, h) m	4	4	3
Ro = Sichardt + (rw or rs) m	20	11	11
Calculated Flow Rate				
Base groundwater flow	v L/day	7,000	4,000	4,000
Partial Penetration Factor	r unitless	1.00	1.00	1.00
Safety factor on groundwater flow	v unitless	3	3	3
Groundwater flow with safety factor	r L/day	21,000	12,000	12,000
Budgeted peak flow rate	e L/day	21,000	12,000	12,000
=		0.2	0.1	0.1
=	gal/min	3	2	2

Theory and Formulae

Trench flow in unconfined aquifer

Use this equation when a/b > 1.5.

$$Q = \frac{\pi K(H^2 - h^2)}{\ln(R_0/r_s)} + 2\left[\frac{xK(H^2 - h^2)}{2L}\right]$$

Trench flow in confined aquifer

Use this equation when a/b > 1.5.

$$Q = \frac{2\pi KB(H-h)}{\ln(R_0/r_s)} + 2\left[\frac{xKB(H-h)}{L}\right]$$

Radial flow in unconfined aquifer

$$Q = \frac{\pi K (H^2 - h^2)}{\ln(R_0/r_s)}$$

rs = well radius for single well

Radial flow in confined aquifer

$$Q = \frac{2\pi KB(H-h)}{\ln(R_0/r_s)}$$

rs = well radius for single well

Unconfined flow from a line source to a drainage trench, 2 sides

$$Q = \frac{xK(H^2 - h^2)}{L}$$

Water table flow from a line source to a drainage trench

Confined flow from a line source to a drainage trench, 2 sides

$$Q = \frac{2xKB(H-h)}{L}$$

if Ro<1.5Rs, then assume confined flow to trench from 4 sides

Radius of Influece

Sichardt Equation:

$$R_0 = 3000 (H - h)\sqrt{K}$$

Partial Penetration Factor (F) Kozeny 1933

$$F = \frac{L}{b} \{1 + 7\cos(\frac{\pi L}{2b})\sqrt{\frac{r}{2L}}\}$$

L = Vertical length from which water is being extracted

r = Single well radius

b = Saturated aquifer thickness

L/r must be > 30

L/b must be < 0.5 Assumption made that same factor may be applied to equivalent well and trench equations.

where:

Q = Pumping rate (m³/s)

K = Hydraulic conductivity (m/s)

H = Depth from the initial static water level to bottom of the saturated aguifer (m)

h = Depth from the dewatering target water level to bottom of the saturated aquifer (m)

 R_0 = Radius of influence (m)

 r_s = Equivalent radius of excavation or distance to the wellpoints from the centre of the trench (half trench width) (m)

x = Trench length (m)

L = Distance from a line source to the trench, equivalent to R_0 (m)

B = Aquifer thickness (m)

a = Excavation length (m)

b = Excavation width (m)

Reference: Powers, J. P., Corwin, A. B., Schmall, Paul C. and Kaeck, W. E. 2007. Construction Dewatering and Groundwater Control: New Methods and Applications, Third Edition, New York, New York: John Wiley & Sons.

APPENDIX G MONITORING AND CONTINGENCY PLAN

Table G1. Monitoring and Contingency Plan for Groundwater Taking

Please note that the monitoring and contingency plan below is in addition to any requirements specified in the Project Specifications.

Category	Item	Performance Requirement	Monitoring Requirements	Initial Action(s) Upon Exceedance	Potential Mitigations if Exceedance not Eliminated
Groundwater Quantity	Quantity Taken	Total quantity taken at each water taking location per day must be less than permitted value at the given water taking location per the PTTW.	-Water quantity taken at <u>each</u> water taking location as specified in the PTTW must be measured accurately and recorded daily.	 - Advise MECP and Contract Authority of exceedance of PTTW limit. - Reduce flow rate being taken such that it is less than the permitted value, provided it is not unsafe to do so. 	Contact the Geotechnical Engineer or Hydrogeologist to identify further options, potentially including grouting, reduction of work zone dimensions, or watertight construction methods.
Groundwater Quantity	Reporting	The quantity taken each day must be reported on the Ontario government's website titled Water Taking Reporting System by March 31st for the prior year's takings.	As above	Not reporting quantities is a violation of the terms and conditions of the PTTW. Report immediately, if overdue.	Not applicable.
Settlement Monitoring	Settlement Monitoring	Settlement exceeds level recommended by Geotechnical Engineer.	 - Pre-construction survey, post-construction survey of all existing adjacent structures within Project Zone per Geotechnical Engineer. - Settlement monitoring in accordance with Geotechnical Instrumentation and Monitoring Plan per Geotechnical Engineer. -Periodic visual inspection during construction. 	 Promptly investigate structures for indications of damage and advise EVB and the Town of Greater Napanee. Additional recommendations per Geotechnical Engineer. Investigate whether settlement may be partly due to dewatering. 	-Reduce water taking rate if potentially due to water taking and if safe to do soReduce groundwater flow through any support of excavation or any excavation surfaces and/or investigate means of alternate support of affected structure.

Table G2. Monitoring and Contingency Plan for Discharge to Greater Napanee Sanitary/Combined Sewer

Please note that the monitoring and contingency plan below is in addition to the terms of and conditions of the Town of Greater Napanee Sewer Discharge Agreement and Project Specifications.

Category	Item	Performance Requirement	Monitoring Requirements	Initial Action(s) Upon Exceedance	Potential Mitigations if Exceedance not Eliminated
IGroundwater	Raw Groundwater Quality (Pre- Treatment)	 No sheen or pure products. Ensure treatment system suitable for water quality observed. Results reviewed by Qualified Person. 	- Prior to first discharge, sample raw groundwater for TSS and Greater Napanee Bylaw limits. Include field measurement of temperature, pH, dissolved oxygen and turbidity Monthly thereafter.	 If sheen or pure products observed in raw water, assess potential sources of new impact. Collect a second sample to confirm. Assess risks of continuing to receive any new contaminants, and determine options for proceeding. Ensure that there are no discharge exceedances, and develop alternate methods of managing water as needed. 	 - Modify intake procedures if possible. - Reduce water taking rate if possible. - Stop dewatering operations until addressed, or unless stopping would create safety risks. - Consider further watertight shoring or ground modification if source of groundwater contamination cannot be excluded.
I(-roundwater	I()uality (Pre-	No excessive sediment. Excessive sediment may be a sign of ground loss.	Monitor twice daily during dewatering with active construction; once daily during dewatering without active construction. Record on daily inspection report.	 Review extraction methodology and equipment for possible changes. Review areas for signs of ground loss. Modify water intake setup, procedures and equipment to reduce solids intake. 	 Modify intake procedures if possible. Reduce water taking rate if possible. Stop dewatering operations until addressed, or unless stopping would create safety risks. Consider further watertight shoring or ground modification if source of groundwater contamination cannot be excluded.
Groundwater Quality	Raw Groundwater Quality (Pre- Treatment)	No sheen or pure products.	Monitor twice daily during dewatering with active construction; once daily during dewatering without active construction. Record on daily inspection report.	 - Assess potential sources of new impact. - Assess risks of continuing to receive new contaminants, and determine options for proceeding. 	 Modify intake procedures if possible. Reduce water taking rate if possible. Stop dewatering operations until addressed, or unless stopping would create safety risks. Consider further watertight shoring or ground modification if source of groundwater contamination cannot be excluded.
Quality	Treated Discharge Water Quality Prior to Discharge at Each Location	 Sanitary/combined sewer limits of the Town of Greater Napanee Sewers By-law met. No sheen or pure products. Results reviewed by Qualified Person. 	Sample analyzed by CAEL accredited laboratory of treated water meeting requirements prior to first discharge.	 Modify treatment methods and/or intake methods. Retest until performance requirements met. 	Further modifications as needed to meet criteria before discharging.
	Treated Discharge Water Quality	 - Sanitary/combined sewer limits of the Town of Greater Napanee Sewers By-law met. - No sheen or pure products. - Results reviewed by Qualified Person. 	Testing frequency per the Town of Greater Napanee Sewer Discharge Agreement.	 Notify Town of Greater Napanee and Contracting Authority of exceedance. Cease discharge and immediately resample on a rush basis. Review function of water treatment system and repair any deficiencies. Review changes to water intake and modify if necessary. 	 - Enhance water treatment system or modify intake until rectified. - Submit additional water quality samples for Greater Napanee Sewers By-law limits to lab to determine if treatment sufficient to permit discharge to sewer.
	Treated Discharge Water Quality	 No signs of elevated sediment levels compared to standard operations. No visual or olfactory signs of any other type of contaminant in discharge. 	Monitor for listed performance requirements twice daily during dewatering with active construction; once daily during dewatering without active construction.	 Review function of water treatment system and repair any deficiencies. Review changes to water intake and modify if necessary. Analyze water quality sample for Greater Napanee Sewers Bylaw. 	 Enhance water treatment system or modify intake until rectified. Submit additional water quality samples to lab to assess quality of treatment prior to further discharge.
Erosion	Erosion at Discharge Point	No significant erosion occurring, and all water entering the intended sewer.	Monitor twice daily during dewatering with active construction; once daily during dewatering without active construction. Record on daily inspection report.	Review discharge setup and repair any deficiencies.	Cease discharge of water to sewer until performance requirement being met.

Table G3. Monitoring and Contingency Plan for Discharge to Ground Surface Greater than 30 m from Surface Water

Please note that the monitoring and contingency plan below is in addition to the terms of and conditions of the Permit to Take Water, Project Specifications, and any external approvals such as Quinte Conservation.

Category	Item	Performance Requirement	Monitoring Requirements	Initial Action(s) Upon Exceedance	Potential Mitigations if Exceedance not Eliminated
Groundwater Quality	Raw Groundwater Quality (Pre- Treatment)	 No sheen or pure product. Ensure treatment system suitable for water quality observed. Results reviewed by Qualified Person. 	measurement of temperature, pH, dissolved oxygen and turbidity Weekly sampling for the first four weeks during active	 If sheen or pure product observed in raw water, notify Qualified Person. Collect a second sample to confirm following development. Dispose of any collected water off-site at licensed facility or to Greater Napanee sanitary/combined sewer if sewer discharge agreement is obtained. 	Consider watertight shoring or ground modification if source of groundwater contamination cannot be excluded.
Groundwater Quality	Raw Groundwater Quality (Pre- Treatment)		Monitor twice daily during dewatering with active construction; once daily during dewatering without active construction.	 Review extraction methodology and equipment for possible changes. Review area for signs of ground loss. Modify water intake setup, procedures and equipment to reduce solids intake. 	 Stop dewatering operations until addressed, unless stopping would create safety risk. Further modifications or means and methods to extract water.
Groundwater Quality	Raw Groundwater Quality (Pre- Treatment)	No sheen or pure product.	Monitor twice daily during dewatering with active construction; once daily during dewatering without active construction.	 Assess potential sources of new impact. Assess risk of continuing to receive new contaminant and determine options for proceeding. 	 Modify intake procedures if possible. Reduce water taking rate if possible. Stop dewatering operations until addressed, unless stopping would create safety risk. Consider watertight excavation method or other alternatives for mitigating impact.
Groundwater Quality	Treated Discharge Water Quality Prior to Discharge at Each Location	 Total suspended solids less than 25 mg/L as determined by laboratory analysis. No sheen or pure product. 	Sample analyzed for TSS, and PWQO Metals and Inorganics for due diligence. Analysis by CALA accredited laboratory of treated water prior to first discharge.	1	Further modifications as needed to meet criteria before discharging.
Groundwater Quality	Treated Discharge Water Quality	Ina avcaadad	Monitor for listed performance requirements twice daily during dewatering with active construction; once daily during dewatering without active construction.	 Review function of water treatment system and repair any deficiencies. Review changes to water intake and modify if necessary. 	 Cease discharge of water to natural environment until performance requirement being met. Enhance water treatment system or modify intake until rectified. Submit additional water quality samples to lab to assess quality of treatment prior to further discharge to environment.
Erosion	Erosion at Discharge Point or Downstream	No significant erosion occurring	Monitor twice daily during dewatering with active construction; once daily during dewatering without active construction.	- Review function of erosion and sediment controls and repair any deficiencies.	 Cease discharge of water to natural environment until performance requirement being met. Enhance erosion and sediment controls until rectified. Monitor hourly for first four hours upon re-commencement.
Discharge Flow	IReaching Surface	Discharge water shall not directly reach surface water via channelized overland flow.	Monitor twice daily during dewatering with active construction to ensure water discharge is not directly reaching surface water via channelized overland flow; once daily during dewatering without active construction.		- Cease discharge of water to natural environment until performance requirement being met. - Enhance erosion and sediment controls until rectified. - Monitor hourly for first four hours upon re-commencement.